BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35561191)

  • 1. Driver gene detection through Bayesian network integration of mutation and expression profiles.
    Chen Z; Lu Y; Cao B; Zhang W; Edwards A; Zhang K
    Bioinformatics; 2022 May; 38(10):2781-2790. PubMed ID: 35561191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OMEN: network-based driver gene identification using mutual exclusivity.
    Van Daele D; Weytjens B; De Raedt L; Marchal K
    Bioinformatics; 2022 Jun; 38(12):3245-3251. PubMed ID: 35552634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PRODIGY: personalized prioritization of driver genes.
    Dinstag G; Shamir R
    Bioinformatics; 2020 Mar; 36(6):1831-1839. PubMed ID: 31681944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer.
    Wu H; Chen Z; Wu Y; Zhang H; Liu Q
    Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PersonaDrive: a method for the identification and prioritization of personalized cancer drivers.
    Erten C; Houdjedj A; Kazan H; Taleb Bahmed AA
    Bioinformatics; 2022 Jun; 38(13):3407-3414. PubMed ID: 35579340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MEXCOwalk: mutual exclusion and coverage based random walk to identify cancer modules.
    Ahmed R; Baali I; Erten C; Hoxha E; Kazan H
    Bioinformatics; 2020 Feb; 36(3):872-879. PubMed ID: 31432076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying driver genes for individual patients through inductive matrix completion.
    Zhang T; Zhang SW; Li Y
    Bioinformatics; 2021 Dec; 37(23):4477-4484. PubMed ID: 34175939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring gene-patient association to identify personalized cancer driver genes by linear neighborhood propagation.
    Huang Y; Chen F; Sun H; Zhong C
    BMC Bioinformatics; 2024 Jan; 25(1):34. PubMed ID: 38254011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ContrastRank: a new method for ranking putative cancer driver genes and classification of tumor samples.
    Tian R; Basu MK; Capriotti E
    Bioinformatics; 2014 Sep; 30(17):i572-8. PubMed ID: 25161249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.