BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 35561293)

  • 1. FIRM: Flexible integration of single-cell RNA-sequencing data for large-scale multi-tissue cell atlas datasets.
    Ming J; Lin Z; Zhao J; Wan X; ; Yang C; Wu AR
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35561293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-center cross-platform single-cell RNA sequencing reference dataset.
    Chen X; Yang Z; Chen W; Zhao Y; Farmer A; Tran B; Furtak V; Moos M; Xiao W; Wang C
    Sci Data; 2021 Feb; 8(1):39. PubMed ID: 33531477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks.
    Wang D; Hou S; Zhang L; Wang X; Liu B; Zhang Z
    Genome Biol; 2021 Feb; 22(1):63. PubMed ID: 33602306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Comparative Analyses of 10X Genomics Chromium and Smart-seq2.
    Wang X; He Y; Zhang Q; Ren X; Zhang Z
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):253-266. PubMed ID: 33662621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BERMAD: batch effect removal for single-cell RNA-seq data using a multi-layer adaptation autoencoder with dual-channel framework.
    Zhan X; Yin Y; Zhang H
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38439545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TAS-Seq is a robust and sensitive amplification method for bead-based scRNA-seq.
    Shichino S; Ueha S; Hashimoto S; Ogawa T; Aoki H; Wu B; Chen CY; Kitabatake M; Ouji-Sageshima N; Sawabata N; Kawaguchi T; Okayama T; Sugihara E; Hontsu S; Ito T; Iwata Y; Wada T; Ikeo K; Sato TA; Matsushima K
    Commun Biol; 2022 Jun; 5(1):602. PubMed ID: 35760847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama.
    Hie B; Bryson B; Berger B
    Nat Biotechnol; 2019 Jun; 37(6):685-691. PubMed ID: 31061482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis.
    Xu X; Yu X; Hu G; Wang K; Zhang J; Li X
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data.
    Wang CX; Zhang L; Wang B
    Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets.
    Yuan M; Chen L; Deng M
    Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment of single-cell RNA-seq samples without overcorrection using kernel density matching.
    Chen M; Zhan Q; Mu Z; Wang L; Zheng Z; Miao J; Zhu P; Li YI
    Genome Res; 2021 Apr; 31(4):698-712. PubMed ID: 33741686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks.
    Wang Y; Liu T; Zhao H
    Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory epithelial cell types, states and fates in the era of single-cell RNA-sequencing.
    Dudchenko O; Ordovas-Montanes J; Bingle CD
    Biochem J; 2023 Jul; 480(13):921-939. PubMed ID: 37410389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows.
    You Y; Tian L; Su S; Dong X; Jabbari JS; Hickey PF; Ritchie ME
    Genome Biol; 2021 Dec; 22(1):339. PubMed ID: 34906205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-supervised integration of single-cell transcriptomics data.
    Andreatta M; Hérault L; Gueguen P; Gfeller D; Berenstein AJ; Carmona SJ
    Nat Commun; 2024 Jan; 15(1):872. PubMed ID: 38287014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species.
    Stein-O'Brien GL; Clark BS; Sherman T; Zibetti C; Hu Q; Sealfon R; Liu S; Qian J; Colantuoni C; Blackshaw S; Goff LA; Fertig EJ
    Cell Syst; 2019 May; 8(5):395-411.e8. PubMed ID: 31121116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Single-Cell Sequencing Guide for Immunologists.
    See P; Lum J; Chen J; Ginhoux F
    Front Immunol; 2018; 9():2425. PubMed ID: 30405621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CaSee: A lightning transfer-learning model directly used to discriminate cancer/normal cells from scRNA-seq.
    Sh Y; Zhang X; Yang Z; Dong J; Wang Y; Zhou Y; Li X; Guo C; Hu Z
    Oncogene; 2022 Oct; 41(44):4866-4876. PubMed ID: 36192479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.