These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 35561337)
1. Doping Compensation Enables High-Detectivity Infrared Organic Photodiodes for Image Sensing. Song Y; Zhong Z; He P; Yu G; Xue Q; Lan L; Huang F Adv Mater; 2022 Jul; 34(29):e2201827. PubMed ID: 35561337 [TBL] [Abstract][Full Text] [Related]
2. Mitigating Dark Current for High-Performance Near-Infrared Organic Photodiodes via Charge Blocking and Defect Passivation. Yang W; Qiu W; Georgitzikis E; Simoen E; Serron J; Lee J; Lieberman I; Cheyns D; Malinowski P; Genoe J; Chen H; Heremans P ACS Appl Mater Interfaces; 2021 Apr; 13(14):16766-16774. PubMed ID: 33820414 [TBL] [Abstract][Full Text] [Related]
3. A High-Performance Solution-Processed Organic Photodetector for Near-Infrared Sensing. Huang J; Lee J; Vollbrecht J; Brus VV; Dixon AL; Cao DX; Zhu Z; Du Z; Wang H; Cho K; Bazan GC; Nguyen TQ Adv Mater; 2020 Jan; 32(1):e1906027. PubMed ID: 31714629 [TBL] [Abstract][Full Text] [Related]
4. Temperature-Dependent Detectivity of Near-Infrared Organic Bulk Heterojunction Photodiodes. Wu Z; Yao W; London AE; Azoulay JD; Ng TN ACS Appl Mater Interfaces; 2017 Jan; 9(2):1654-1660. PubMed ID: 27989105 [TBL] [Abstract][Full Text] [Related]
5. Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Ollearo R; Wang J; Dyson MJ; Weijtens CHL; Fattori M; van Gorkom BT; van Breemen AJJM; Meskers SCJ; Janssen RAJ; Gelinck GH Nat Commun; 2021 Dec; 12(1):7277. PubMed ID: 34907190 [TBL] [Abstract][Full Text] [Related]
6. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors. Wu Z; Zhai Y; Kim H; Azoulay JD; Ng TN Acc Chem Res; 2018 Dec; 51(12):3144-3153. PubMed ID: 30520307 [TBL] [Abstract][Full Text] [Related]
7. An A-D-A'-D-A-Type Narrow Bandgap Electron Acceptor Based on Selenophene-Flanked Diketopyrrolopyrrole for Sensitive Near-Infrared Photodetection. Wang Y; Yang M; Yin B; Wu B; Liu G; Jeong S; Zhang Y; Yang C; He Z; Huang F; Cao Y; Duan C ACS Appl Mater Interfaces; 2024 Dec; 16(49):66846-66856. PubMed ID: 38350229 [TBL] [Abstract][Full Text] [Related]
8. Significant Detectivity Enhancement of Broad Spectral Organic-Inorganic Hybrid Photodiodes by C Zhou Z; Liao G; Song X; Dai Q; Sun L; Peng Y; Wang P Nanoscale Res Lett; 2022 Jan; 17(1):19. PubMed ID: 35076806 [TBL] [Abstract][Full Text] [Related]
9. Feasibility of achieving high detectivity at short- and mid-wavelength infrared using nanowire-plasmonic photodetectors with p-n heterojunctions. Ren D; Rong Z; Azizur-Rahman KM; Somasundaram S; Shahili M; Huffaker DL Nanotechnology; 2019 Jan; 30(4):044002. PubMed ID: 30465548 [TBL] [Abstract][Full Text] [Related]
10. Identification of the Origin of Ultralow Dark Currents in Organic Photodiodes. Ma X; Bin H; van Gorkom BT; van der Pol TPA; Dyson MJ; Weijtens CHL; Fattori M; Meskers SCJ; van Breemen AJJM; Tordera D; Janssen RAJ; Gelinck GH Adv Mater; 2023 Feb; 35(8):e2209598. PubMed ID: 36482790 [TBL] [Abstract][Full Text] [Related]
11. Effective Dark Current Suppression for High-Detectivity Organic Near-Infrared Photodetectors Using a Non-Fullerene Acceptor. Eun HJ; Kye H; Kim D; Jin IS; Jung JW; Ko SJ; Heo J; Kim BG; Kim JH ACS Appl Mater Interfaces; 2021 Mar; 13(9):11144-11150. PubMed ID: 33624502 [TBL] [Abstract][Full Text] [Related]
12. Heterojunction bilayers serving as a charge transporting interlayer reduce the dark current and enhance photomultiplication in organic shortwave infrared photodetectors. Shin C; Li N; Seo B; Eedugurala N; Azoulay JD; Ng TN Mater Horiz; 2022 Aug; 9(8):2172-2179. PubMed ID: 35642962 [TBL] [Abstract][Full Text] [Related]
13. Organic Photodiodes with Thermally Reliable Dark Current and Excellent Detectivity Enabled by Low Donor Concentration. Zhang C; Cao Y; Song Y; Yu G; Lan L; Zhou C; Lin Z; Wang L; Li N; Huang F; Cao Y ACS Appl Mater Interfaces; 2023 Feb; 15(5):7175-7183. PubMed ID: 36718854 [TBL] [Abstract][Full Text] [Related]
14. Reverse dark current in organic photodetectors and the major role of traps as source of noise. Kublitski J; Hofacker A; Boroujeni BK; Benduhn J; Nikolis VC; Kaiser C; Spoltore D; Kleemann H; Fischer A; Ellinger F; Vandewal K; Leo K Nat Commun; 2021 Jan; 12(1):551. PubMed ID: 33483507 [TBL] [Abstract][Full Text] [Related]
15. Shortwave Infrared Organic Photodiodes Realized by Polaron Engineering. Lee S; Lee J; Sim HR; So C; Chung DS Adv Mater; 2024 Feb; 36(8):e2310250. PubMed ID: 38016048 [TBL] [Abstract][Full Text] [Related]
16. Photomultiplication-Type Organic Photodetectors for Near-Infrared Sensing with High and Bias-Independent Specific Detectivity. Xing S; Kublitski J; Hänisch C; Winkler LC; Li TY; Kleemann H; Benduhn J; Leo K Adv Sci (Weinh); 2022 Mar; 9(7):e2105113. PubMed ID: 34994114 [TBL] [Abstract][Full Text] [Related]
17. Low-power and high-detectivity Ge photodiodes by in-situ heavy As doping during Ge-on-Si seed layer growth. Lin Y; Lee KH; Son B; Tan CS Opt Express; 2021 Feb; 29(3):2940-2952. PubMed ID: 33770904 [TBL] [Abstract][Full Text] [Related]
18. Organic Thin-Film Red-Light Photodiodes with Tunable Spectral Response Via Selective Exciton Activation. Xing S; Wang X; Guo E; Kleemann H; Leo K ACS Appl Mater Interfaces; 2020 Mar; 12(11):13061-13067. PubMed ID: 32088954 [TBL] [Abstract][Full Text] [Related]
19. Large-area flexible colloidal-quantum-dot infrared photodiodes for photoplethysmogram signal measurements. Liang X; Liu Y; Liu P; Yang J; Liu J; Yang Y; Wang B; Hu J; Zhang L; Yang G; Lu S; Liang G; Lan X; Zhang J; Gao L; Tang J Sci Bull (Beijing); 2023 Apr; 68(7):698-705. PubMed ID: 36931915 [TBL] [Abstract][Full Text] [Related]
20. Solution-Processed Ternary Perovskite-Organic Broadband Photodetectors with Ultrahigh Detectivity. Zhu T; Shen L; Zhang D; Zheng J; Gong X ACS Appl Mater Interfaces; 2022 Apr; 14(16):18744-18750. PubMed ID: 35420415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]