These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35561377)

  • 1. Dense-pattern multi-pass cavity based on spherical mirrors in a Z-shaped configuration for Raman gas sensing.
    Wang P; Chen W; Wang J; Lu Y; Tang Z; Wan F
    Opt Lett; 2022 May; 47(10):2466-2469. PubMed ID: 35561377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity-Enhanced Raman Spectroscopy for Detection of Trace Gaseous Impurities in Hydrogen for Fuel Cells.
    Wang P; Chen W; Wang J; Lu Y; Tang Z; Tan Y
    Anal Chem; 2023 May; 95(17):6894-6904. PubMed ID: 37073953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hazardous Gas Detection by Cavity-Enhanced Raman Spectroscopy for Environmental Safety Monitoring.
    Wang P; Chen W; Wang J; Zhou F; Hu J; Zhang Z; Wan F
    Anal Chem; 2021 Nov; 93(46):15474-15481. PubMed ID: 34775758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Versatile Multiple-Pass Raman System for Industrial Trace Gas Detection.
    Shen C; Wen C; Huang X; Long X
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical design of Lissajous pattern multipass cells with multiple spherical mirrors based on particle swarm optimization.
    Kong R; Liu P; Zhou X
    Opt Express; 2022 Jul; 30(14):24443-24451. PubMed ID: 36236999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parabolic mirror cavity-enhanced Raman spectroscopy for trace gas detection.
    Miao J; Liu J; Ning Z; Xu H; Pan Y; Li Z; Fang Y
    Opt Lett; 2024 Oct; 49(19):5455-5458. PubMed ID: 39352980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy.
    Salter R; Chu J; Hippler M
    Analyst; 2012 Oct; 137(20):4669-76. PubMed ID: 22836382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Sensitivity and In Situ Multi-Component Detection of Gases Based on Multiple-Reflection-Cavity-Enhanced Raman Spectroscopy.
    Yang D; Li W; Tian H; Chen Z; Ji Y; Dong H; Wang Y
    Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple technique of coupling a diode laser into a linear power buildup cavity for Raman gas sensing.
    Ge H; Kong W; Wang R; Zhao G; Ma W; Chen W; Wan F
    Opt Lett; 2023 Apr; 48(8):2186-2189. PubMed ID: 37058673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity-enhanced Raman spectroscopy with optical feedback frequency-locking for gas sensing.
    Wang P; Chen W; Wan F; Wang J; Hu J
    Opt Express; 2019 Nov; 27(23):33312-33325. PubMed ID: 31878402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multigas Analysis by Cavity-Enhanced Raman Spectroscopy for Power Transformer Diagnosis.
    Wang P; Chen W; Wang J; Tang J; Shi Y; Wan F
    Anal Chem; 2020 Apr; 92(8):5969-5977. PubMed ID: 32216282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized optical design of the multiple-row circular multi-pass cell with dense spot pattern.
    Yang Z; Zou M; Sun L
    Opt Express; 2019 Nov; 27(23):32883-32891. PubMed ID: 31878364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Sensitivity Raman Gas Probe for In Situ Multi-Component Gas Detection.
    Guo J; Luo Z; Liu Q; Yang D; Dong H; Huang S; Kong A; Wu L
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity Enhanced Multi-Channels Gases Raman Spectrometer.
    Yang D; Liu Q; Guo J; Wu L; Kong A
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underwater In Situ Dissolved Gas Detection Based on Multi-Reflection Raman Spectroscopy.
    Li M; Liu Q; Yang D; Guo J; Si G; Wu L; Zheng R
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace Analysis of Gases and Liquids with Spontaneous Raman Scattering Based on the Integrating Sphere Principle.
    Huang B; Zhao Q; Sun C; Zhu L; Zhang H; Zhang Y; Liu C; Li F
    Anal Chem; 2022 Oct; 94(39):13311-13314. PubMed ID: 36154009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Gas Detection by Cavity-Enhanced Raman Spectroscopy with Sub-ppm Sensitivity.
    Yang QY; Tan Y; Qu ZH; Sun Y; Liu AW; Hu SM
    Anal Chem; 2023 Apr; 95(13):5652-5660. PubMed ID: 36940417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient Hydrocarbon Detection with an Ultra-Low-Loss Cavity Raman Analyzer.
    Singh J; Muller A
    Anal Chem; 2023 Feb; 95(7):3703-3711. PubMed ID: 36744943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved multiple-pass Raman spectrometer.
    KC U; Silver JA; Hovde DC; Varghese PL
    Appl Opt; 2011 Aug; 50(24):4805-16. PubMed ID: 21857704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Printed Miniature Fiber-Coupled Multipass Cells with Dense Spot Patterns for ppb-Level Methane Detection Using a Near-IR Diode Laser.
    Cui R; Dong L; Wu H; Ma W; Xiao L; Jia S; Chen W; Tittel FK
    Anal Chem; 2020 Oct; 92(19):13034-13041. PubMed ID: 32869639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.