These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35561557)

  • 1. EMG-driven fatigue-based self-adapting admittance control of a hand rehabilitation robot.
    Mashayekhi M; Moghaddam MM
    J Biomech; 2022 Jun; 138():111104. PubMed ID: 35561557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hybrid Arm-Hand Rehabilitation Robot With EMG-Based Admittance Controller.
    Xie C; Yang Q; Huang Y; Su S; Xu T; Song R
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1332-1342. PubMed ID: 34813476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Home-based self-help telerehabilitation of the upper limb assisted by an electromyography-driven wrist/hand exoneuromusculoskeleton after stroke.
    Nam C; Zhang B; Chow T; Ye F; Huang Y; Guo Z; Li W; Rong W; Hu X; Poon W
    J Neuroeng Rehabil; 2021 Sep; 18(1):137. PubMed ID: 34526058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticomuscular integrated representation of voluntary motor effort in robotic control for wrist-hand rehabilitation after stroke.
    Guo Z; Zhou S; Ji K; Zhuang Y; Song J; Nam C; Hu X; Zheng Y
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35193124
    [No Abstract]   [Full Text] [Related]  

  • 9. Adaptive robot mediated upper limb training using electromyogram-based muscle fatigue indicators.
    Thacham Poyil A; Steuber V; Amirabdollahian F
    PLoS One; 2020; 15(5):e0233545. PubMed ID: 32469912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5903-6. PubMed ID: 24111082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voluntary Control of an Ankle Joint Exoskeleton by Able-Bodied Individuals and Stroke Survivors Using EMG-Based Admittance Control Scheme.
    Zhuang Y; Leng Y; Zhou J; Song R; Li L; Su SW
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):695-705. PubMed ID: 32746072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study.
    Cesqui B; Tropea P; Micera S; Krebs HI
    J Neuroeng Rehabil; 2013 Jul; 10():75. PubMed ID: 23855907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in muscle activity and fatigue of the upper limb between Task-Specific training and robot assisted training among individuals post stroke.
    Shahar N; Schwartz I; Portnoy S
    J Biomech; 2019 May; 89():28-33. PubMed ID: 30982537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activities of Daily Living-Based Rehabilitation System for Arm and Hand Motor Function Retraining After Stroke.
    Song X; Van De Ven SS; Liu L; Wouda FJ; Wang H; Shull PB
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():621-631. PubMed ID: 35239484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke.
    Hu XL; Tong RK; Ho NS; Xue JJ; Rong W; Li LS
    Neurorehabil Neural Repair; 2015 Sep; 29(8):767-76. PubMed ID: 25549656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaching exercise for chronic paretic upper extremity after stroke using a novel rehabilitation robot with arm-weight support and concomitant electrical stimulation and vibration: before-and-after feasibility trial.
    Amano Y; Noma T; Etoh S; Miyata R; Kawamura K; Shimodozono M
    Biomed Eng Online; 2020 May; 19(1):28. PubMed ID: 32375788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myoelectrically controlled wrist robot for stroke rehabilitation.
    Song R; Tong KY; Hu X; Zhou W
    J Neuroeng Rehabil; 2013 Jun; 10():52. PubMed ID: 23758925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.