These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35561599)

  • 1. Strength-fracture toughness synergy strategy in ostrich tibia's compact bone: Hierarchical and gradient.
    Li JZ; Wang X; He LT; Yan FX; Zhang N; Ren CX; Hu QD
    J Mech Behav Biomed Mater; 2022 Jul; 131():105262. PubMed ID: 35561599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration.
    Casari D; Kochetkova T; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():391-402. PubMed ID: 34175475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone as a Structural Material.
    Zimmermann EA; Ritchie RO
    Adv Healthc Mater; 2015 Jun; 4(9):1287-304. PubMed ID: 25865873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofibril-mediated fracture resistance of bone.
    Tertuliano OA; Edwards BW; Meza LR; Deshpande VS; Greer JR
    Bioinspir Biomim; 2021 Apr; 16(3):. PubMed ID: 33470971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis on multi-toughening mechanism of microstructure of osteon.
    Yin D; Chen B; Lin S
    J Mech Behav Biomed Mater; 2021 May; 117():104408. PubMed ID: 33657473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone.
    Al-Qudsy L; Hu YW; Xu H; Yang PF
    ACS Biomater Sci Eng; 2023 May; 9(5):2203-2219. PubMed ID: 37075172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture behaviour and toughening mechanisms of dry and wet collagen.
    Bose S; Li S; Mele E; Silberschmidt VV
    Acta Biomater; 2022 Apr; 142():174-184. PubMed ID: 35134565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure.
    Song Z; Ni Y; Cai S
    Acta Biomater; 2019 Jun; 91():284-293. PubMed ID: 31028909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From brittle to ductile fracture of bone.
    Peterlik H; Roschger P; Klaushofer K; Fratzl P
    Nat Mater; 2006 Jan; 5(1):52-5. PubMed ID: 16341218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fracture toughness of bone at the microscale.
    Aldegaither N; Sernicola G; Mesgarnejad A; Karma A; Balint D; Wang J; Saiz E; Shefelbine SJ; Porter AE; Giuliani F
    Acta Biomater; 2021 Feb; 121():475-483. PubMed ID: 33307248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms.
    Nalla RK; Kinney JH; Ritchie RO
    Biomaterials; 2003 Oct; 24(22):3955-68. PubMed ID: 12834591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competing mechanisms in fracture of staggered mineralized collagen fibril arrays.
    Xu M; An B; Zhang D
    J Mech Behav Biomed Mater; 2023 May; 141():105761. PubMed ID: 36905708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2018 Jun; 82():18-26. PubMed ID: 29567526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the structural and mechanical properties of pinecone fish (Monocentris japonica) scales.
    Guo M; Wu S; Zhao J; Zhuang J; Wu Q
    Microsc Res Tech; 2023 May; 86(5):589-599. PubMed ID: 36715138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed X-ray visualization of dynamic crack initiation and propagation in bone.
    Zhai X; Guo Z; Gao J; Kedir N; Nie Y; Claus B; Sun T; Xiao X; Fezzaa K; Chen WW
    Acta Biomater; 2019 May; 90():278-286. PubMed ID: 30926579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils.
    Tavakol M; Vaughan TJ
    J R Soc Interface; 2023 Jan; 20(198):20220803. PubMed ID: 36695019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of microstructure on crack propagation in cortical bone at the mesoscale.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2020 Nov; 112():110020. PubMed ID: 32980752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone toughness at the molecular scale: A model for fracture toughness using crosslinked osteopontin on synthetic and biogenic mineral substrates.
    Cavelier S; Dastjerdi AK; McKee MD; Barthelat F
    Bone; 2018 May; 110():304-311. PubMed ID: 29486368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.