These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 35561607)
21. Metal-Organic Frameworks for Electrocatalytic Sensing of Hydrogen Peroxide. Wang S; Zhang T; Zhu X; Zu S; Xie Z; Lu X; Zhang M; Song L; Jin Y Molecules; 2022 Jul; 27(14):. PubMed ID: 35889442 [TBL] [Abstract][Full Text] [Related]
22. A metal-organic framework with multienzyme activity as a biosensing platform for real-time electrochemical detection of nitric oxide and hydrogen peroxide. Ling PH; Zang XN; Qian CH; Gao F Analyst; 2021 Apr; 146(8):2609-2616. PubMed ID: 33720222 [TBL] [Abstract][Full Text] [Related]
23. Conductive metal-organic framework based label-free electrochemical detection of circulating tumor DNA. Liu J; Yang S; Shen J; Fa H; Hou C; Yang M Mikrochim Acta; 2022 Sep; 189(10):391. PubMed ID: 36138259 [TBL] [Abstract][Full Text] [Related]
24. In situ synthesis of self-supporting conductive CuCo-based bimetal organic framework for sensitive nonenzymatic glucose sensing in serum and beverage. Tian Y; Xie L; Liu X; Geng Y; Wang J; Ma M Food Chem; 2024 Mar; 437(Pt 1):137875. PubMed ID: 37918160 [TBL] [Abstract][Full Text] [Related]
25. In Situ Growth of Metal-Organic Framework HKUST-1 on Graphene Oxide Nanoribbons with High Electrochemical Sensing Performance in Imatinib Determination. Rezvani Jalal N; Madrakian T; Afkhami A; Ghoorchian A ACS Appl Mater Interfaces; 2020 Jan; 12(4):4859-4869. PubMed ID: 31908170 [TBL] [Abstract][Full Text] [Related]
26. One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay. Tang D; Yang X; Wang B; Ding Y; Xu S; Liu J; Peng Y; Yu X; Su Z; Qin X ACS Appl Mater Interfaces; 2021 Oct; 13(39):46225-46232. PubMed ID: 34553591 [TBL] [Abstract][Full Text] [Related]
27. Porous graphene based electrochemical immunosensor using Cu Liu X; Yue T; Qi K; Qiu Y; Guo X Talanta; 2020 Sep; 217():121042. PubMed ID: 32498912 [TBL] [Abstract][Full Text] [Related]
28. In Situ Synthesis of a Sandwich-like Graphene@ZIF-67 Heterostructure for Highly Sensitive Nonenzymatic Glucose Sensing in Human Serums. Chen X; Liu D; Cao G; Tang Y; Wu C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9374-9384. PubMed ID: 30727733 [TBL] [Abstract][Full Text] [Related]
29. Graphene Oxide Directed One-Step Synthesis of Flowerlike Graphene@HKUST-1 for Enzyme-Free Detection of Hydrogen Peroxide in Biological Samples. Wang Q; Yang Y; Gao F; Ni J; Zhang Y; Lin Z ACS Appl Mater Interfaces; 2016 Nov; 8(47):32477-32487. PubMed ID: 27933823 [TBL] [Abstract][Full Text] [Related]
30. Graphite paste electrodes modified with a sulfo-functionalized metal-organic framework (type MIL-101) for voltammetric sensing of dopamine. Gao LL; Sun WJ; Yin XM; Bu R; Gao EQ Mikrochim Acta; 2019 Nov; 186(12):762. PubMed ID: 31712906 [TBL] [Abstract][Full Text] [Related]
31. 2D MOF with electrochemical exfoliated graphene for nonenzymatic glucose sensing: Central metal sites and oxidation potentials. Liu B; Wang X; Liu H; Zhai Y; Li L; Wen H Anal Chim Acta; 2020 Jul; 1122():9-19. PubMed ID: 32503748 [TBL] [Abstract][Full Text] [Related]
32. Facet-energy inspired metal oxide extended hexapods decorated with graphene quantum dots: sensitive detection of bisphenol A in live cells. Ashraf G; Asif M; Aziz A; Dao AQ; Zhang T; Iftikhar T; Wang Q; Liu H Nanoscale; 2020 Apr; 12(16):9014-9023. PubMed ID: 32270807 [TBL] [Abstract][Full Text] [Related]
33. Highly stable Ni-MOF comprising triphenylamine moieties as a high-performance redox indicator for sensitive aptasensor construction. Wu H; Li M; Wang Z; Yu H; Han J; Xie G; Chen S Anal Chim Acta; 2019 Feb; 1049():74-81. PubMed ID: 30612659 [TBL] [Abstract][Full Text] [Related]
34. Preparation of W-N-C single atom catalyst and Cu Zhang X; Miao S; Song W; Liu X; Wu C; Gan T Food Chem; 2024 Nov; 459():140338. PubMed ID: 38996633 [TBL] [Abstract][Full Text] [Related]
35. Monodispersed Ni active sites anchored on N-doped porous carbon nanosheets as high-efficiency electrocatalyst for hydrogen peroxide sensing. Hao J; Zhang M; Wu C; Wu K Anal Chim Acta; 2021 Sep; 1179():338812. PubMed ID: 34535246 [TBL] [Abstract][Full Text] [Related]
36. Metal-organic framework-based S-scheme heterojunction photocatalysts. Yuan L; Du P; Yin L; Yao J; Wang J; Liu C Nanoscale; 2024 Mar; 16(11):5487-5503. PubMed ID: 38393670 [TBL] [Abstract][Full Text] [Related]
37. Metal-Organic-Framework-Based Nanoarrays for Oxygen Evolution Electrocatalysis. Liu W; Ni C; Gao M; Zhao X; Zhang W; Li R; Zhou K ACS Nano; 2023 Dec; 17(24):24564-24592. PubMed ID: 38048137 [TBL] [Abstract][Full Text] [Related]
38. Thrombin aptasensor enabled by Pt nanoparticles-functionalized Co-based metal organic frameworks assisted electrochemical signal amplification. Yang Y; Yang Z; Lv J; Yuan R; Chai Y Talanta; 2017 Jul; 169():44-49. PubMed ID: 28411820 [TBL] [Abstract][Full Text] [Related]
39. Co Ashtiani S; Khoshnamvand M; Shaliutina-Kolešová A; Bouša D; Sofer Z; Friess K Chemosphere; 2020 Sep; 255():126966. PubMed ID: 32416392 [TBL] [Abstract][Full Text] [Related]
40. Postmodulation of the Metal-Organic Framework Precursor toward the Vacancy-Rich Cu Li J; Xin WL; Dai YX; Shu G; Zhang XJ; Marks RS; Cosnier S; Shan D Anal Chem; 2021 Aug; 93(32):11066-11071. PubMed ID: 34348024 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]