BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35561635)

  • 1. Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups.
    Pérez-Madrigal MM; Gil AM; Casanovas J; Jiménez AI; Macor LP; Alemán C
    Colloids Surf B Biointerfaces; 2022 Aug; 216():112522. PubMed ID: 35561635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the Self-Assembly of Highly Aromatic Phenylalanine Homopeptides.
    Mayans E; Alemán C
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33419355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity and Hierarchy in Supramolecular Assemblies of Triphenylalanine: From Laminated Helical Ribbons to Toroids.
    Mayans E; Casanovas J; Gil AM; Jiménez AI; Cativiela C; Puiggalí J; Alemán C
    Langmuir; 2017 Apr; 33(16):4036-4048. PubMed ID: 28374591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterochirality Restricts the Self-Assembly of Phenylalanine Dipeptides Capped with Highly Aromatic Groups.
    Gil AM; Casanovas J; Mayans E; Jiménez AI; Puiggalí J; Alemán C
    J Phys Chem B; 2020 Jul; 124(28):5913-5918. PubMed ID: 32559085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembly of Tetraphenylalanine Peptides.
    Mayans E; Ballano G; Casanovas J; Díaz A; Pérez-Madrigal MM; Estrany F; Puiggalí J; Cativiela C; Alemán C
    Chemistry; 2015 Nov; 21(47):16895-905. PubMed ID: 26419936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical self-assembly of di-, tri- and tetraphenylalanine peptides capped with two fluorenyl functionalities: from polymorphs to dendrites.
    Mayans E; Ballano G; Casanovas J; Del Valle LJ; Pérez-Madrigal MM; Estrany F; Jiménez AI; Puiggalí J; Cativiela C; Alemán C
    Soft Matter; 2016 Jun; 12(24):5475-88. PubMed ID: 27220532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations.
    Tamamis P; Adler-Abramovich L; Reches M; Marshall K; Sikorski P; Serpell L; Gazit E; Archontis G
    Biophys J; 2009 Jun; 96(12):5020-9. PubMed ID: 19527662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence.
    Handelman A; Kuritz N; Natan A; Rosenman G
    Langmuir; 2016 Mar; 32(12):2847-62. PubMed ID: 26496411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic and aromatic interaction-directed supramolecular self-assembly of a designed Fmoc-tripeptide into helical nanoribbons.
    Xie Y; Wang X; Huang R; Qi W; Wang Y; Su R; He Z
    Langmuir; 2015 Mar; 31(9):2885-94. PubMed ID: 25694059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid-like Fibrils from a Diphenylalanine Capped with an Aromatic Fluorenyl.
    Martí D; Mayans E; Gil AM; Díaz A; Jiménez AI; Yousef I; Keridou I; Cativiela C; Puiggalí J; Alemán C
    Langmuir; 2018 Dec; 34(50):15551-15559. PubMed ID: 30453736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Solvent Choice on the Self-Assembly Properties of a Diphenylalanine Amphiphile Stabilized by an Ion Pair.
    Mayans E; Ballano G; Sendros J; Font-Bardia M; Campos JL; Puiggalí J; Cativiela C; Alemán C
    Chemphyschem; 2017 Jul; 18(14):1888-1896. PubMed ID: 28374964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles.
    Wang T; Ménard-Moyon C; Bianco A
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10532-10544. PubMed ID: 38367060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.
    Rajbhandary A; Nilsson BL
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27696352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fmoc-RGDS based fibrils: atomistic details of their hierarchical assembly.
    Zanuy D; Poater J; Solà M; Hamley IW; Alemán C
    Phys Chem Chem Phys; 2016 Jan; 18(2):1265-78. PubMed ID: 26659906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glycine substitution on Fmoc-diphenylalanine self-assembly and gelation properties.
    Tang C; Ulijn RV; Saiani A
    Langmuir; 2011 Dec; 27(23):14438-49. PubMed ID: 21995651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications.
    Wang Y; Geng Q; Zhang Y; Adler-Abramovich L; Fan X; Mei D; Gazit E; Tao K
    J Colloid Interface Sci; 2023 Apr; 636():113-133. PubMed ID: 36623365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differently N-Capped Analogues of Fmoc-FF.
    Diaferia C; Rosa E; Gallo E; Morelli G; Accardo A
    Chemistry; 2023 May; 29(28):e202300661. PubMed ID: 36877530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bio-inspired silkworm 3D cocoon-like hierarchical self-assembled structure from π-conjugated natural aromatic amino acids.
    Mukherjee S; Reddy SMM; Shanmugam G
    Soft Matter; 2024 Feb; 20(8):1834-1845. PubMed ID: 38314911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.