These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 35561701)
1. Machine learning-based detection of aberrant deep learning segmentations of target and organs at risk for prostate radiotherapy using a secondary segmentation algorithm. Claessens M; Vanreusel V; De Kerf G; Mollaert I; Löfman F; Gooding MJ; Brouwer C; Dirix P; Verellen D Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35561701 [No Abstract] [Full Text] [Related]
2. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation. Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384 [TBL] [Abstract][Full Text] [Related]
3. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer. Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501 [TBL] [Abstract][Full Text] [Related]
5. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging. Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555 [TBL] [Abstract][Full Text] [Related]
6. Contouring quality assurance methodology based on multiple geometric features against deep learning auto-segmentation. Duan J; Bernard ME; Castle JR; Feng X; Wang C; Kenamond MC; Chen Q Med Phys; 2023 May; 50(5):2715-2732. PubMed ID: 36788735 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process. Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216 [TBL] [Abstract][Full Text] [Related]
8. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a deep image-to-image network (DI2IN) auto-segmentation algorithm across a network of cancer centers. Rayn K; Gupta V; Mulinti S; Clark R; Magliari A; Chaudhari S; Garima G; Beriwal S J Cancer Res Ther; 2024 Apr; 20(3):1020-1025. PubMed ID: 39023610 [TBL] [Abstract][Full Text] [Related]
10. Deep-learning-based image registration and automatic segmentation of organs-at-risk in cone-beam CT scans from high-dose radiation treatment of pancreatic cancer. Han X; Hong J; Reyngold M; Crane C; Cuaron J; Hajj C; Mann J; Zinovoy M; Greer H; Yorke E; Mageras G; Niethammer M Med Phys; 2021 Jun; 48(6):3084-3095. PubMed ID: 33905539 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of auto-segmentation for EBRT planning structures using deep learning-based workflow on cervical cancer. Wang J; Chen Y; Xie H; Luo L; Tang Q Sci Rep; 2022 Aug; 12(1):13650. PubMed ID: 35953516 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of auto-contouring softwares in delineation of organs at risk in lung cancer and rectal cancer. Chen W; Wang C; Zhan W; Jia Y; Ruan F; Qiu L; Yang S; Li Y Sci Rep; 2021 Nov; 11(1):23002. PubMed ID: 34836989 [TBL] [Abstract][Full Text] [Related]
13. Registration-guided deep learning image segmentation for cone beam CT-based online adaptive radiotherapy. Ma L; Chi W; Morgan HE; Lin MH; Chen M; Sher D; Moon D; Vo DT; Avkshtol V; Lu W; Gu X Med Phys; 2022 Aug; 49(8):5304-5316. PubMed ID: 35460584 [TBL] [Abstract][Full Text] [Related]
14. Custom-Trained Deep Learning-Based Auto-Segmentation for Male Pelvic Iterative CBCT on C-Arm Linear Accelerators. Tegtmeier RC; Kutyreff CJ; Smetanick JL; Hobbis D; Laughlin BS; Toesca DAS; Clouser EL; Rong Y Pract Radiat Oncol; 2024; 14(5):e383-e394. PubMed ID: 38325548 [TBL] [Abstract][Full Text] [Related]
15. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy. Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621 [TBL] [Abstract][Full Text] [Related]
16. Clinical evaluation of deep learning and atlas-based auto-segmentation for organs at risk delineation. Yamauchi R; Itazawa T; Kobayashi T; Kashiyama S; Akimoto H; Mizuno N; Kawamori J Med Dosim; 2024 Autumn; 49(3):167-176. PubMed ID: 38061916 [TBL] [Abstract][Full Text] [Related]
17. Prospectively-validated deep learning model for segmenting swallowing and chewing structures in CT. Iyer A; Thor M; Onochie I; Hesse J; Zakeri K; LoCastro E; Jiang J; Veeraraghavan H; Elguindi S; Lee NY; Deasy JO; Apte AP Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34874302 [No Abstract] [Full Text] [Related]
18. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers. Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062 [TBL] [Abstract][Full Text] [Related]
19. Automated segmentation in pelvic radiotherapy: A comprehensive evaluation of ATLAS-, machine learning-, and deep learning-based models. Bordigoni B; Trivellato S; Pellegrini R; Meregalli S; Bonetto E; Belmonte M; Castellano M; Panizza D; Arcangeli S; De Ponti E Phys Med; 2024 Sep; 125():104486. PubMed ID: 39098106 [TBL] [Abstract][Full Text] [Related]
20. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer. Guo H; Wang J; Xia X; Zhong Y; Peng J; Zhang Z; Hu W Radiat Oncol; 2021 Jun; 16(1):113. PubMed ID: 34162410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]