These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35562001)

  • 1. Determination of pressure resistance of a partially stoppered vial by using a coupled CFD-0D model of lyophilization.
    Kamenik B; Hriberšek M; Zadravec M
    Eur J Pharm Biopharm; 2022 Jun; 175():53-64. PubMed ID: 35562001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the design of the stopper including dimension, type, and vent area on lyophilization process.
    Mungikar A; Ludzinski M; Kamat M
    PDA J Pharm Sci Technol; 2010; 64(6):507-16. PubMed ID: 21502061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial.
    Pikal MJ; Roy ML; Shah S
    J Pharm Sci; 1984 Sep; 73(9):1224-37. PubMed ID: 6491939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization.
    Milton N; Pikal MJ; Roy ML; Nail SL
    PDA J Pharm Sci Technol; 1997; 51(1):7-16. PubMed ID: 9099059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 1: Computational Modeling.
    Ganguly A; Varma N; Sane P; Bogner R; Pikal M; Alexeenko A
    AAPS PharmSciTech; 2017 Apr; 18(3):577-585. PubMed ID: 27151134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat transfer in vial lyophilization.
    Brülls M; Rasmuson A
    Int J Pharm; 2002 Oct; 246(1-2):1-16. PubMed ID: 12270604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and Heat Transfer Control During Freeze Drying. Effect of Vial Holders and Influence of Pressure.
    Palmkron SB; Gustavsson L; Wahlgren M; Bergensthål B; Fureby AM
    Pharm Res; 2022 Oct; 39(10):2597-2606. PubMed ID: 35925479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.
    Ganguly A; Alexeenko AA; Schultz SG; Kim SG
    Eur J Pharm Biopharm; 2013 Oct; 85(2):223-35. PubMed ID: 23748132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive models of lyophilization process for development, scale-up/tech transfer and manufacturing.
    Zhu T; Moussa EM; Witting M; Zhou D; Sinha K; Hirth M; Gastens M; Shang S; Nere N; Somashekar SC; Alexeenko A; Jameel F
    Eur J Pharm Biopharm; 2018 Jul; 128():363-378. PubMed ID: 29733948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat and mass transfer scale-up issues during freeze-drying, I: atypical radiation and the edge vial effect.
    Rambhatla S; Pikal MJ
    AAPS PharmSciTech; 2003; 4(2):E14. PubMed ID: 12916896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vial Wall Effect on Freeze-Drying Speed.
    Ramšak M; Hriberšek M
    J Pharm Sci; 2024 May; 113(5):1275-1284. PubMed ID: 38070773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Depressurization Based Controlled Ice Nucleation in Pharmaceutical Freeze-drying: The Roles of the Ballast Gas and the Vial.
    Strongrich A; Lim FJ; Kumar L; Alexeenko A
    J Pharm Sci; 2021 Nov; 110(11):3639-3647. PubMed ID: 34303673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.
    Ganguly A; Nail SL; Alexeenko A
    J Pharm Sci; 2013 May; 102(5):1610-25. PubMed ID: 23580359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Container/Closure Integrity Testing and the Identification of a Suitable Vial/Stopper Combination for Low-Temperature Storage at -80 {degrees}C.
    Zuleger B; Werner U; Kort A; Glowienka R; Wehnes E; Duncan D
    PDA J Pharm Sci Technol; 2012; 66(5):453-65. PubMed ID: 23035029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying.
    Scutellà B; Passot S; Bourlés E; Fonseca F; Tréléa IC
    J Pharm Sci; 2017 Mar; 106(3):770-778. PubMed ID: 27939928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of vial heat transfer coefficients during the primary and secondary drying stages of freeze-drying.
    Yoon K; Narsimhan V
    Int J Pharm; 2023 Mar; 635():122746. PubMed ID: 36812952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless sensor networks for pharmaceutical lyophilization: Quantification of local gas pressure and temperature in primary drying.
    Strongrich A; Alexeenko A
    Eur J Pharm Biopharm; 2021 Dec; 169():52-63. PubMed ID: 34547415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.