These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35562332)

  • 1. On the origins of conductive pulse sensing inside a nanopore.
    Lastra LS; Bandara YMNDY; Nguyen M; Farajpour N; Freedman KJ
    Nat Commun; 2022 May; 13(1):2186. PubMed ID: 35562332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of entrance effects on particle electrophoretic behavior near a nanopore for resistive pulse sensing.
    Hsu C; Lin CY; Alizadeh A; Daiguji H; Hsu WL
    Electrophoresis; 2021 Nov; 42(21-22):2206-2214. PubMed ID: 34472124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis.
    Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A
    Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of Transport-Induced-Charge Electroosmotic Pumping toward Alternating Current Resistive Pulse Sensing.
    Hsu WL; Hwang J; Daiguji H
    ACS Sens; 2018 Nov; 3(11):2320-2326. PubMed ID: 30350951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling Electroosmosis in Nanopores Without Altering the Nanopore Sensing Region.
    Baldelli M; Di Muccio G; Sauciuc A; Morozzo Della Rocca B; Viola F; Balme S; Bonini A; Maglia G; Chinappi M
    Adv Mater; 2024 Jun; ():e2401761. PubMed ID: 38860821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in Salt Concentration Modify the Translocation of Neutral Molecules through a ΔCymA Nanopore in a Non-monotonic Manner.
    Prajapati JD; Pangeni S; Aksoyoglu MA; Winterhalter M; Kleinekathöfer U
    ACS Nano; 2022 May; 16(5):7701-7712. PubMed ID: 35435659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore.
    He Y; Tsutsui M; Scheicher RH; Fan C; Taniguchi M; Kawai T
    Biophys J; 2013 Aug; 105(3):776-82. PubMed ID: 23931325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic flow reversal outside glass nanopores.
    Laohakunakorn N; Thacker VV; Muthukumar M; Keyser UF
    Nano Lett; 2015 Jan; 15(1):695-702. PubMed ID: 25490120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmosis Dominates Electrophoresis of Antibiotic Transport Across the Outer Membrane Porin F.
    Bafna JA; Pangeni S; Winterhalter M; Aksoyoglu MA
    Biophys J; 2020 Jun; 118(11):2844-2852. PubMed ID: 32348725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating protein translocation in the presence of an electrolyte concentration gradient across a solid-state nanopore.
    Saharia J; Bandara YMNDY; Kim MJ
    Electrophoresis; 2022 Mar; 43(5-6):785-792. PubMed ID: 35020223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Enhancement in Solid-State Nanopores Depends on Three-Dimensional DNA Structure.
    Wang V; Ermann N; Keyser UF
    Nano Lett; 2019 Aug; 19(8):5661-5666. PubMed ID: 31313927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt Gradient Control of Translocation Dynamics in a Solid-State Nanopore.
    Leong IW; Tsutsui M; Yokota K; Taniguchi M
    Anal Chem; 2021 Dec; 93(49):16700-16708. PubMed ID: 34860500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores.
    Di Muccio G; Morozzo Della Rocca B; Chinappi M
    ACS Nano; 2022 Jun; 16(6):8716-8728. PubMed ID: 35587777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation.
    Asandei A; Schiopu I; Chinappi M; Seo CH; Park Y; Luchian T
    ACS Appl Mater Interfaces; 2016 May; 8(20):13166-79. PubMed ID: 27159806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal Ionic-Current Rectification Caused by Reversed Electroosmotic Flow under Viscosity Gradients across Thin Nanopores.
    Qiu Y; Siwy ZS; Wanunu M
    Anal Chem; 2019 Jan; 91(1):996-1004. PubMed ID: 30516369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic Signal Amplification of DNA in a Nanopore.
    Tsutsui M; Yokota K; He Y; Kawai T
    Small Methods; 2022 Nov; 6(11):e2200761. PubMed ID: 36196624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electric field strength in orifice-like nanopores of ultrathin membranes.
    Getpreecharsawas J; McGrath JL; Borkholder DA
    Nanotechnology; 2015 Jan; 26(4):045704. PubMed ID: 25557214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium Chloride Effects Field-Induced Protein Unfolding and the Transport Energetics Inside a Nanopipette.
    Bandara YMNDY; Freedman KJ
    J Am Chem Soc; 2024 Feb; 146(5):3171-3185. PubMed ID: 38253325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slip-Coupled Electroosmosis and Electrophoresis Dictate DNA Translocation Speed in Solid-State Nanopores.
    Ahmadi E; Sadeghi A; Chakraborty S
    Langmuir; 2023 Sep; 39(35):12292-12301. PubMed ID: 37603825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.