These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35562384)

  • 1. Experimental research on surface acoustic wave microfluidic atomization for drug delivery.
    Huang QY; Le Y; Hu H; Wan ZJ; Ning J; Han JL
    Sci Rep; 2022 May; 12(1):7930. PubMed ID: 35562384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact SAW aerosol generator.
    Winkler A; Harazim S; Collins DJ; Brünig R; Schmidt H; Menzel SB
    Biomed Microdevices; 2017 Mar; 19(1):9. PubMed ID: 28127655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization.
    Qi A; Friend JR; Yeo LY; Morton DA; McIntosh MP; Spiccia L
    Lab Chip; 2009 Aug; 9(15):2184-93. PubMed ID: 19606295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomization off thin water films generated by high-frequency substrate wave vibrations.
    Collins DJ; Manor O; Winkler A; Schmidt H; Friend JR; Yeo LY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056312. PubMed ID: 23214881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Waterproof Films on the Atomization Behavior of Surface Acoustic Waves.
    Huang QY; Hu H; Han JL; Lei YL; Yang XQ
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31752420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization.
    Alvarez M; Friend J; Yeo LY
    Nanotechnology; 2008 Nov; 19(45):455103. PubMed ID: 21832762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast microfluidics using surface acoustic waves.
    Yeo LY; Friend JR
    Biomicrofluidics; 2009 Jan; 3(1):12002. PubMed ID: 19693383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Highly Efficient Lamb Wave Transducers toward Dual-Surface Simultaneous Atomization.
    Gai C; Ma Q; Ning J; Ding Y; Lei Y; Li H; Guo C; Hu H
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement Method of Surface Acoustic Wave-Atomizer Efficiency for Olfactory Display.
    Nakamoto T; Ollila S; Kato S; Li H; Qi G
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30507923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization.
    Qi A; Yeo L; Friend J; Ho J
    Lab Chip; 2010 Feb; 10(4):470-6. PubMed ID: 20126687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation.
    Rajapaksa A; Qi A; Yeo LY; Coppel R; Friend JR
    Lab Chip; 2014 Jun; 14(11):1858-65. PubMed ID: 24740643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M; Lee PVS; Collins DJ
    Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips.
    Richard C; Fakhfouri A; Colditz M; Striggow F; Kronstein-Wiedemann R; Tonn T; Medina-Sánchez M; Schmidt OG; Gemming T; Winkler A
    Lab Chip; 2019 Dec; 19(24):4043-4051. PubMed ID: 31723953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J; Ren X; Zhou Q; Zhou J; Xu Z
    Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene-mediated microfluidic transport and nebulization via high frequency Rayleigh wave substrate excitation.
    Ang KM; Yeo LY; Hung YM; Tan MK
    Lab Chip; 2016 Sep; 16(18):3503-14. PubMed ID: 27502324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ampicillin micronization by supercritical assisted atomization.
    Reverchon E; Della Porta G; Spada A
    J Pharm Pharmacol; 2003 Nov; 55(11):1465-71. PubMed ID: 14713356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.
    Travagliati M; Shilton R; Beltram F; Cecchini M
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.