These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35562384)

  • 21. Ultrasonic atomization of liquids in drop-chain acoustic fountains.
    Simon JC; Sapozhnikov OA; Khokhlova VA; Crum LA; Bailey MR
    J Fluid Mech; 2015 Mar; 766():129-146. PubMed ID: 25977591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface acoustic wave atomizer and electrostatic deposition.
    Yamagata Y
    Adv Biochem Eng Biotechnol; 2010; 119():101-14. PubMed ID: 19826777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple, and highly efficient edge-effect surface acoustic wave atomizer.
    Yang Q; Huang W; Liu X; Sami R; Fan X; Dong Q; Luo J; Tao R; Fu C
    Ultrasonics; 2024 Aug; 142():107359. PubMed ID: 38823151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SAW-based fluid atomization using mass-producible chip devices.
    Winkler A; Harazim SM; Menzel SB; Schmidt H
    Lab Chip; 2015 Sep; 15(18):3793-9. PubMed ID: 26262577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SAW-driven droplet jetting technology in microfluidic: A review.
    Lei Y; Hu H
    Biomicrofluidics; 2020 Nov; 14(6):061505. PubMed ID: 33343781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanocrystalline ZnO film layer on silicon and its application to surface acoustic wave-based streaming.
    Lee DS; Luo J; Fu Y; Milne WI; Park NM; Kim SH; Jung MY; Maeng S
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4626-9. PubMed ID: 19049072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and Characterization of Thickness Mode Piezoelectric Devices for Atomization and Acoustofluidics.
    Vasan A; Connacher W; Friend J
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32831306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical study of acoustophoretic manipulation of particles in microfluidic channels.
    Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y
    Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization.
    Yousefi M; Pourmehran O; Gorji-Bandpy M; Inthavong K; Yeo L; Tu J
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2035-2050. PubMed ID: 28735415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface acoustic wave manipulation of bioparticles.
    Qi M; Dang D; Yang X; Wang J; Zhang H; Liang W
    Soft Matter; 2023 Jun; 19(23):4166-4187. PubMed ID: 37212436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.
    Shilton RJ; Travagliati M; Beltram F; Cecchini M
    Adv Mater; 2014 Aug; 26(29):4941-6. PubMed ID: 24677370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic drug delivery to the maxillary sinus.
    Pourmehran O; Arjomandi M; Cazzolato B; Tian Z; Vreugde S; Javadiyan S; Psaltis AJ; Wormald PJ
    Int J Pharm; 2021 Sep; 606():120927. PubMed ID: 34303821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid Surface Acoustic Wave-Electrohydrodynamic Atomization (SAW-EHDA) For the Development of Functional Thin Films.
    Choi KH; Kim HB; Ali K; Sajid M; Uddin Siddiqui G; Chang DE; Kim HC; Ko JB; Dang HW; Doh YH
    Sci Rep; 2015 Oct; 5():15178. PubMed ID: 26478189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic wave based MEMS devices for biosensing applications.
    Voiculescu I; Nordin AN
    Biosens Bioelectron; 2012 Mar; 33(1):1-9. PubMed ID: 22310157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precision manufacture of phase-change perfluorocarbon droplets using microfluidics.
    Martz TD; Sheeran PS; Bardin D; Lee AP; Dayton PA
    Ultrasound Med Biol; 2011 Nov; 37(11):1952-7. PubMed ID: 21963036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring surface acoustic wave atomisation for cryo-electron microscopy sample preparation.
    Ashtiani D; de Marco A; Neild A
    Lab Chip; 2019 Apr; 19(8):1378-1385. PubMed ID: 30869091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB.
    Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X
    Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.