These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 35562507)
81. Pollutants removal, greenhouse gases emission and functional genes in wastewater ecological soil infiltration systems: influences of influent surface organic loading and aeration mode. Chen J; Jiang Z; Chen Y; Qiu Y; Tao T; Du X; Pan J Water Sci Technol; 2021 Apr; 83(7):1619-1632. PubMed ID: 33843747 [TBL] [Abstract][Full Text] [Related]
82. Treatment of domestic wastewater using conventional and baffled septic tanks. Nasr FA; Mikhaeil B Environ Technol; 2013; 34(13-16):2337-43. PubMed ID: 24350489 [TBL] [Abstract][Full Text] [Related]
83. Investigating Industrial Effluent Impact on Municipal Wastewater Treatment Plant in Vaal, South Africa. Iloms E; Ololade OO; Ogola HJO; Selvarajan R Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32050467 [TBL] [Abstract][Full Text] [Related]
84. Enhancing pollutant removal efficiency in urban domestic wastewater treatment through the hybrid multi-soil-layering (MSL) system: A case study in Morocco. Kammoun A; Ouazzani N; El Fels AEA; Hejjaj A; Mandi L Water Sci Technol; 2024 May; 89(10):2685-2702. PubMed ID: 38822608 [TBL] [Abstract][Full Text] [Related]
85. Integrated textile effluent treatment method. Bapat S; Jaspal D; Malviya A Water Environ Res; 2021 Jul; 93(7):1060-1076. PubMed ID: 33314486 [TBL] [Abstract][Full Text] [Related]
86. Optimization of operation conditions for domestic sewage treatment using a sequencing batch biofilm filter. Ji B; Wei T; Chen W; Fan J; Wang J; Zhu L; Yang K Water Sci Technol; 2016 Sep; 74(6):1492-1498. PubMed ID: 27685978 [TBL] [Abstract][Full Text] [Related]
87. Organics and nutrients removal in vertical flow wetlands: loading fluctuation and alternative media. Saeed T; Hossain N Environ Technol; 2021 Mar; 42(7):1104-1118. PubMed ID: 31401944 [TBL] [Abstract][Full Text] [Related]
88. Kinetic study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes. Ahmadian M; Yousefi N; Van Ginkel SW; Zare MR; Rahimi S; Fatehizadeh A Water Sci Technol; 2012; 66(4):754-60. PubMed ID: 22766863 [TBL] [Abstract][Full Text] [Related]
89. Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale. Sun F; Sun B; Hu J; He Y; Wu W J Hazard Mater; 2015 Apr; 286():416-24. PubMed ID: 25603291 [TBL] [Abstract][Full Text] [Related]
90. Assessment of the Bulgarian Wastewater Treatment Plants' Impact on the Receiving Water Bodies. Yotova G; Lazarova S; Kudłak B; Zlateva B; Mihaylova V; Wieczerzak M; Venelinov T; Tsakovski S Molecules; 2019 Jun; 24(12):. PubMed ID: 31216784 [TBL] [Abstract][Full Text] [Related]
91. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater. Güneş E; Çifçi Dİ; Çelik SÖ Environ Technol; 2018 Apr; 39(7):824-830. PubMed ID: 28345381 [TBL] [Abstract][Full Text] [Related]
92. Post-treatment of effluents from UASB reactor treating industrial wastewater sediment by constructed wetland. Tufaner F Environ Technol; 2020 Mar; 41(7):912-920. PubMed ID: 30122146 [TBL] [Abstract][Full Text] [Related]
93. Differences in the treatment efficiency of a cold-resistant floating bed plant receiving two types of low-pollution wastewater. Duan J; Feng Y; Yu Y; He S; Xue L; Yang L Environ Monit Assess; 2016 May; 188(5):283. PubMed ID: 27071661 [TBL] [Abstract][Full Text] [Related]
94. COD fractionation and biological treatability of mixed industrial wastewaters. Fall C; Millán-Lagunas E; Bâ KM; Gallego-Alarcón I; García-Pulido D; Díaz-Delgado C; Solís-Morelos C J Environ Manage; 2012 Dec; 113():71-7. PubMed ID: 22996003 [TBL] [Abstract][Full Text] [Related]
95. Performance of duckweed (Lemna minor L.) on different types of wastewater treatment. Ozengin N; Elmaci A J Environ Biol; 2007 Apr; 28(2):307-14. PubMed ID: 17915771 [TBL] [Abstract][Full Text] [Related]
96. Performance and cost evaluation of constructed wetland for domestic waste water treatment. Deeptha VT; Sudarsan JS; Baskar G J Environ Biol; 2015 Sep; 36(5):1071-4. PubMed ID: 26521546 [TBL] [Abstract][Full Text] [Related]
97. Extracellular enzymatic activity of two hydrolases in wastewater treatment for biological nutrient removal. Berrio-Restrepo JM; Saldarriaga JC; Correa MA; Aguirre NJ Appl Microbiol Biotechnol; 2017 Oct; 101(19):7385-7396. PubMed ID: 28782075 [TBL] [Abstract][Full Text] [Related]
98. Characteristics and risks of secondary pollutants generation during compression and transfer of municipal solid waste in Shanghai. Wang X; Xie B; Wu D; Hassan M; Huang C Waste Manag; 2015 Sep; 43():1-8. PubMed ID: 26174356 [TBL] [Abstract][Full Text] [Related]
99. Process Optimization of Electrochemical Treatment of COD and Total Nitrogen Containing Wastewater. Yao J; Mei Y; Jiang J; Xia G; Chen J Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055672 [TBL] [Abstract][Full Text] [Related]
100. Application of patent bio-rack wetland system using Phragmites sp. for domestic wastewater treatment in the presence of high total dissolved solids (TDS) and heavy metal salts. Valipour A; Raman VK; Ghole VS J Environ Sci Eng; 2011 Jul; 53(3):281-8. PubMed ID: 23029929 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]