BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 35562659)

  • 1. Application of Bayesian genomic prediction methods to genome-wide association analyses.
    Wolc A; Dekkers JCM
    Genet Sel Evol; 2022 May; 54(1):31. PubMed ID: 35562659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits.
    Gianola D; Fernando RL
    Genetics; 2020 Feb; 214(2):305-331. PubMed ID: 31879318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of prior specifications in a shrinkage-inducing Bayesian model for quantitative trait mapping and genomic prediction.
    Knürr T; Läärä E; Sillanpää MJ
    Genet Sel Evol; 2013 Jul; 45(1):24. PubMed ID: 23834140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine.
    Cappa EP; Chen C; Klutsch JG; Sebastian-Azcona J; Ratcliffe B; Wei X; Da Ros L; Ullah A; Liu Y; Benowicz A; Sadoway S; Mansfield SD; Erbilgin N; Thomas BR; El-Kassaby YA
    BMC Genomics; 2022 Jul; 23(1):536. PubMed ID: 35870886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multiple-Trait Bayesian Variable Selection Regression Method for Integrating Phenotypic Causal Networks in Genome-Wide Association Studies.
    Wang Z; Chapman D; Morota G; Cheng H
    G3 (Bethesda); 2020 Dec; 10(12):4439-4448. PubMed ID: 33020191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits.
    MacLeod IM; Bowman PJ; Vander Jagt CJ; Haile-Mariam M; Kemper KE; Chamberlain AJ; Schrooten C; Hayes BJ; Goddard ME
    BMC Genomics; 2016 Feb; 17():144. PubMed ID: 26920147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances.
    Su G; Christensen OF; Janss L; Lund MS
    J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle.
    Lopes FB; Baldi F; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Magnabosco CU
    Animal; 2021 Jan; 15(1):100006. PubMed ID: 33516009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.
    Calus MP; de Haas Y; Veerkamp RF
    J Dairy Sci; 2013 Oct; 96(10):6703-15. PubMed ID: 23891299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits.
    Qu J; Runcie D; Cheng H
    Genetics; 2023 Mar; 223(3):. PubMed ID: 36529897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a Bayesian dominance model improves power in quantitative trait genome-wide association analysis.
    Bennewitz J; Edel C; Fries R; Meuwissen TH; Wellmann R
    Genet Sel Evol; 2017 Jan; 49(1):7. PubMed ID: 28088170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-analysis of genome-wide association from genomic prediction models.
    Bernal Rubio YL; Gualdrón Duarte JL; Bates RO; Ernst CW; Nonneman D; Rohrer GA; King A; Shackelford SD; Wheeler TL; Cantet RJ; Steibel JP
    Anim Genet; 2016 Feb; 47(1):36-48. PubMed ID: 26607299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits.
    Hayashi T; Iwata H
    BMC Bioinformatics; 2013 Jan; 14():34. PubMed ID: 23363272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Genomic Bayesian Multi-trait and Multi-environment Model.
    Montesinos-López OA; Montesinos-López A; Crossa J; Toledo FH; Pérez-Hernández O; Eskridge KM; Rutkoski J
    G3 (Bethesda); 2016 Sep; 6(9):2725-44. PubMed ID: 27342738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Association Analyses Based on Broadly Different Specifications for Prior Distributions, Genomic Windows, and Estimation Methods.
    Chen C; Steibel JP; Tempelman RJ
    Genetics; 2017 Aug; 206(4):1791-1806. PubMed ID: 28637709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimensionality of genomic information and its impact on genome-wide associations and variant selection for genomic prediction: a simulation study.
    Jang S; Tsuruta S; Leite NG; Misztal I; Lourenco D
    Genet Sel Evol; 2023 Jul; 55(1):49. PubMed ID: 37460964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian methods applied to GWAS.
    Fernando RL; Garrick D
    Methods Mol Biol; 2013; 1019():237-74. PubMed ID: 23756894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.