These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35562875)

  • 41. Physiologically-based pharmacokinetic modelling to predict oprozomib CYP3A drug-drug interaction potential in patients with advanced malignancies.
    Ou Y; Xu Y; Gore L; Harvey RD; Mita A; Papadopoulos KP; Wang Z; Cutler RE; Pinchasik DE; Tsimberidou AM
    Br J Clin Pharmacol; 2019 Mar; 85(3):530-539. PubMed ID: 30428505
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part II.
    Staatz CE; Goodman LK; Tett SE
    Clin Pharmacokinet; 2010 Apr; 49(4):207-21. PubMed ID: 20214406
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of Physiologically Based Pharmacokinetic Modeling to Predict Drug-Drug Interactions between Elexacaftor/Tezacaftor/Ivacaftor and Tacrolimus in Lung Transplant Recipients.
    Hong E; Carmanov E; Shi A; Chung PS; Rao AP; Forrester K; Beringer PM
    Pharmaceutics; 2023 May; 15(5):. PubMed ID: 37242680
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physiologically based pharmacokinetic modeling to predict complex drug-drug interactions: a case study of AZD2327 and its metabolite, competitive and time-dependent CYP3A inhibitors.
    Guo J; Zhou D; Li Y; Khanh BH
    Biopharm Drug Dispos; 2015 Nov; 36(8):507-19. PubMed ID: 26081137
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Which Genetic Determinants Should be Considered for Tacrolimus Dose Optimization in Kidney Transplantation? A Combined Analysis of Genes Affecting the CYP3A Locus.
    Bruckmueller H; Werk AN; Renders L; Feldkamp T; Tepel M; Borst C; Caliebe A; Kunzendorf U; Cascorbi I
    Ther Drug Monit; 2015 Jun; 37(3):288-95. PubMed ID: 25271728
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potential for pharmacokinetic interactions between Schisandra sphenanthera and bosutinib, but not imatinib: in vitro metabolism study combined with a physiologically-based pharmacokinetic modelling approach.
    Adiwidjaja J; Boddy AV; McLachlan AJ
    Br J Clin Pharmacol; 2020 Oct; 86(10):2080-2094. PubMed ID: 32250458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Minimal Physiologically-Based Pharmacokinetic Model for Tacrolimus in Living-Donor Liver Transplantation: Perspectives Related to Liver Regeneration and the cytochrome P450 3A5 (CYP3A5) Genotype.
    Itohara K; Yano I; Tsuzuki T; Uesugi M; Nakagawa S; Yonezawa A; Okajima H; Kaido T; Uemoto S; Matsubara K
    CPT Pharmacometrics Syst Pharmacol; 2019 Aug; 8(8):587-595. PubMed ID: 31087501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Theoretical Physiologically-Based Pharmacokinetic Approach to Ascertain Covariates Explaining the Large Interpatient Variability in Tacrolimus Disposition.
    Emoto C; Johnson TN; Hahn D; Christians U; Alloway RR; Vinks AA; Fukuda T
    CPT Pharmacometrics Syst Pharmacol; 2019 May; 8(5):273-284. PubMed ID: 30843669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of the most influential sources of variability in tacrolimus trough blood concentrations in adult liver transplant recipients: a bottom-up approach.
    Gérard C; Stocco J; Hulin A; Blanchet B; Verstuyft C; Durand F; Conti F; Duvoux C; Tod M
    AAPS J; 2014 May; 16(3):379-91. PubMed ID: 24526611
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Physiologically based pharmacokinetic modeling and simulation to predict drug-drug interactions of ivosidenib with CYP3A perpetrators in patients with acute myeloid leukemia.
    Prakash C; Fan B; Ke A; Le K; Yang H
    Cancer Chemother Pharmacol; 2020 Nov; 86(5):619-632. PubMed ID: 32978634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in renal transplant recipients on a new once-daily formulation.
    Benkali K; Rostaing L; Premaud A; Woillard JB; Saint-Marcoux F; Urien S; Kamar N; Marquet P; Rousseau A
    Clin Pharmacokinet; 2010 Oct; 49(10):683-92. PubMed ID: 20818834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physiologically Based Pharmacokinetic Modeling to Predict Drug-Drug Interactions with Efavirenz Involving Simultaneous Inducing and Inhibitory Effects on Cytochromes.
    Marzolini C; Rajoli R; Battegay M; Elzi L; Back D; Siccardi M
    Clin Pharmacokinet; 2017 Apr; 56(4):409-420. PubMed ID: 27599706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus.
    Hesselink DA; van Schaik RH; van der Heiden IP; van der Werf M; Gregoor PJ; Lindemans J; Weimar W; van Gelder T
    Clin Pharmacol Ther; 2003 Sep; 74(3):245-54. PubMed ID: 12966368
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physiologically Based Pharmacokinetic Modeling Approach to Identify the Drug-Drug Interaction Mechanism of Nifedipine and a Proton Pump Inhibitor, Omeprazole.
    Le Merdy M; Tan ML; Sun D; Ni Z; Lee SC; Babiskin A; Zhao L
    Eur J Drug Metab Pharmacokinet; 2021 Jan; 46(1):41-51. PubMed ID: 33064292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients.
    Shi Y; Li Y; Tang J; Zhang J; Zou Y; Cai B; Wang L
    Gene; 2013 Jan; 512(2):226-31. PubMed ID: 23107770
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tacrolimus Dose Optimization Strategy for Refractory Ulcerative Colitis Based on the Cytochrome P450 3A5 Polymorphism Prediction Using Trough Concentration after 24 Hours.
    Onodera M; Endo K; Naito T; Moroi R; Kuroha M; Kanazawa Y; Kimura T; Shiga H; Kakuta Y; Negoro K; Kinouchi Y; Shimosegawa T
    Digestion; 2018; 97(1):90-96. PubMed ID: 29393157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Physiologically Based Pharmacokinetic Model of Voriconazole Integrating Time-Dependent Inhibition of CYP3A4, Genetic Polymorphisms of CYP2C19 and Predictions of Drug-Drug Interactions.
    Li X; Frechen S; Moj D; Lehr T; Taubert M; Hsin CH; Mikus G; Neuvonen PJ; Olkkola KT; Saari TI; Fuhr U
    Clin Pharmacokinet; 2020 Jun; 59(6):781-808. PubMed ID: 31853755
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Effect of Weight and CYP3A5 Genotype on the Population Pharmacokinetics of Tacrolimus in Stable Paediatric Renal Transplant Recipients.
    Prytuła AA; Cransberg K; Bouts AH; van Schaik RH; de Jong H; de Wildt SN; Mathôt RA
    Clin Pharmacokinet; 2016 Sep; 55(9):1129-43. PubMed ID: 27138785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients.
    Elens L; Hesselink DA; Bouamar R; Budde K; de Fijter JW; De Meyer M; Mourad M; Kuypers DR; Haufroid V; van Gelder T; van Schaik RH
    Ther Drug Monit; 2014 Feb; 36(1):71-9. PubMed ID: 24061445
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physiologically-based pharmacokinetic modelling to investigate the effect of CYP3A4/3A5 maturation on tacrolimus pharmacokinetics in paediatric HSCT patients.
    Guan Y; Liu X; Huang K; Wang Y; Qiu K; Wang X; Huang M; Zhou D; Yu X; Zhong G
    Eur J Pharm Sci; 2024 Oct; 201():106839. PubMed ID: 38906231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.