These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 35562876)

  • 1. Alginate: Enhancement Strategies for Advanced Applications.
    Hurtado A; Aljabali AAA; Mishra V; Tambuwala MM; Serrano-Aroca Á
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks.
    Gao Q; Kim BS; Gao G
    Mar Drugs; 2021 Dec; 19(12):. PubMed ID: 34940707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications.
    Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R
    Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications.
    Naghieh S; Sarker MD; Abelseth E; Chen X
    J Mech Behav Biomed Mater; 2019 May; 93():183-193. PubMed ID: 30802775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review.
    Hernández-González AC; Téllez-Jurado L; Rodríguez-Lorenzo LM
    Carbohydr Polym; 2020 Feb; 229():115514. PubMed ID: 31826429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate Hydrogels: A Tool for 3D Cell Encapsulation, Tissue Engineering, and Biofabrication.
    Bonani W; Cagol N; Maniglio D
    Adv Exp Med Biol; 2020; 1250():49-61. PubMed ID: 32601937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications.
    Choe G; Oh S; Seok JM; Park SA; Lee JY
    Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics.
    Jiang T; Munguia-Lopez JG; Gu K; Bavoux MM; Flores-Torres S; Kort-Mascort J; Grant J; Vijayakumar S; De Leon-Rodriguez A; Ehrlicher AJ; Kinsella JM
    Biofabrication; 2019 Dec; 12(1):015024. PubMed ID: 31404917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin improves peroxidase-mediated alginate hydrogel characteristics as a potential injectable hydrogel for soft tissue engineering applications.
    Morshedloo F; Khoshfetrat AB; Kazemi D; Ahmadian M
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2950-2960. PubMed ID: 32351038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of alginate-based hydrogel bioprinting for application in tissue engineering.
    Rastogi P; Kandasubramanian B
    Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles.
    Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S
    J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofabrication of three-dimensional cellular structures based on gelatin methacrylate-alginate interpenetrating network hydrogel.
    Krishnamoorthy S; Zhang Z; Xu C
    J Biomater Appl; 2019 Mar; 33(8):1105-1117. PubMed ID: 30636494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic Chitosan Scaffolds Generated by Electrostatic Flocking Combined with Alginate Hydrogel Support Chondrogenic Differentiation.
    Gossla E; Bernhardt A; Tonndorf R; Aibibu D; Cherif C; Gelinsky M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.
    Balakrishnan B; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron beam treated injectable agarose/alginate beads prepared by electrospraying.
    Krömmelbein C; Xie X; Seifert J; Konieczny R; Friebe S; Käs J; Riedel S; Mayr SG
    Carbohydr Polym; 2022 Dec; 298():120024. PubMed ID: 36241257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicomponent polysaccharide alginate-based bioinks.
    Piras CC; Smith DK
    J Mater Chem B; 2020 Sep; 8(36):8171-8188. PubMed ID: 32776063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.