BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35563040)

  • 1. Development and Characterization of Indole-Responsive Whole-Cell Biosensor Based on the Inducible Gene Expression System from
    Matulis P; Kutraite I; Augustiniene E; Valanciene E; Jonuskiene I; Malys N
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of L- and D-lactate-inducible systems from Escherichia coli MG1655, Cupriavidus necator H16 and Pseudomonas species.
    Augustiniene E; Malys N
    Sci Rep; 2022 Feb; 12(1):2123. PubMed ID: 35136142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of a 3-hydroxypropionic acid-inducible system from Pseudomonas putida for orthogonal gene expression control in Escherichia coli and Cupriavidus necator.
    Hanko EKR; Minton NP; Malys N
    Sci Rep; 2017 May; 7(1):1724. PubMed ID: 28496205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Application of Whole-Cell Biosensors for the Detection of Gallic Acid.
    Kutraite I; Malys N
    ACS Synth Biol; 2023 Feb; 12(2):533-543. PubMed ID: 36724292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Genetically Encoded Biosensor for the Detection of Levulinic Acid.
    Kim TH; Woo SG; Kim SK; Yoo BH; Shin J; Rha E; Kim SJ; Kwon KK; Lee H; Kim H; Kim HT; Sung BH; Lee SG; Lee DH
    J Microbiol Biotechnol; 2023 Apr; 33(4):552-558. PubMed ID: 36775859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance.
    Molina-Santiago C; Daddaoua A; Fillet S; Duque E; Ramos JL
    Environ Microbiol; 2014 May; 16(5):1267-81. PubMed ID: 24373097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paralogous Regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a Basis for Arsenic Biosensor Development.
    Fernández M; Morel B; Ramos JL; Krell T
    Appl Environ Microbiol; 2016 Jul; 82(14):4133-4144. PubMed ID: 27208139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.
    Simon O; Klaiber I; Huber A; Pfannstiel J
    J Proteomics; 2014 Sep; 109():212-27. PubMed ID: 25026441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription factor-based biosensors for detection of naturally occurring phenolic acids.
    Augustiniene E; Kutraite I; Valanciene E; Matulis P; Jonuskiene I; Malys N
    N Biotechnol; 2023 Dec; 78():1-12. PubMed ID: 37714511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Transcription Factor-Based Biosensor for Detection of Itaconic Acid.
    Hanko EKR; Minton NP; Malys N
    ACS Synth Biol; 2018 May; 7(5):1436-1446. PubMed ID: 29638114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indigo production by naphthalene-degrading bacteria.
    Bhushan B; Samanta SK; Jain RK
    Lett Appl Microbiol; 2000 Jul; 31(1):5-9. PubMed ID: 10886605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor.
    Phoenix P; Keane A; Patel A; Bergeron H; Ghoshal S; Lau PC
    Environ Microbiol; 2003 Dec; 5(12):1309-27. PubMed ID: 14641576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida.
    Cook TB; Rand JM; Nurani W; Courtney DK; Liu SA; Pfleger BF
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):517-527. PubMed ID: 29299733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of strains of Ralstonia eutropha and Pseudomonas putida for biotechnological production of 2-methylcitric acid.
    Ewering C; Heuser F; Benölken JK; Brämer CO; Steinbüchel A
    Metab Eng; 2006 Nov; 8(6):587-602. PubMed ID: 16876450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Escherichia coli rhamnose promoter rhaP(BAD) is in Pseudomonas putida KT2440 independent of Crp-cAMP activation.
    Jeske M; Altenbuchner J
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1923-33. PubMed ID: 19789867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification, Characterization, and Application of a Highly Sensitive Lactam Biosensor from
    Thompson MG; Pearson AN; Barajas JF; Cruz-Morales P; Sedaghatian N; Costello Z; Garber ME; Incha MR; Valencia LE; Baidoo EEK; Martin HG; Mukhopadhyay A; Keasling JD
    ACS Synth Biol; 2020 Jan; 9(1):53-62. PubMed ID: 31841635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440.
    Plaggenborg R; Overhage J; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):528-35. PubMed ID: 12764569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment.
    de Las Heras A; de Lorenzo V
    Methods Mol Biol; 2012; 834():261-81. PubMed ID: 22144365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of polyhydroxyalkanoates from vegetable oil under the co-expression of fadE and phaJ genes in Cupriavidus necator.
    Flores-Sánchez A; Rathinasabapathy A; López-Cuellar MDR; Vergara-Porras B; Pérez-Guevara F
    Int J Biol Macromol; 2020 Dec; 164():1600-1607. PubMed ID: 32768477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.