These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35563247)
1. Inactivation of Liu X; Wang Z; Li J; Wang Y; Sun Y; Dou D; Liang X; Wu J; Wang L; Xu Y; Liu D Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563247 [TBL] [Abstract][Full Text] [Related]
2. Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Joshi SG; Paff M; Friedman G; Fridman G; Fridman A; Brooks AD Am J Infect Control; 2010 May; 38(4):293-301. PubMed ID: 20085853 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of Staphylococcus aureus and Escherichia coli Biofilms by Air-Based Atmospheric-Pressure DBD Plasma. Khosravi S; Jafari S; Zamani H; Nilkar M Appl Biochem Biotechnol; 2021 Nov; 193(11):3641-3650. PubMed ID: 34347251 [TBL] [Abstract][Full Text] [Related]
4. Microscopic analysis of the inhibition of staphylococcal biofilm formation by Escherichia coli and the disruption of preformed staphylococcal biofilm by bacteriophage. Manoharadas S; Altaf M; Alrefaei AF; Hussain SA; Devasia RM; Badjah Hadj AYM; Abuhasil MSA Microsc Res Tech; 2021 Jul; 84(7):1513-1521. PubMed ID: 33470479 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of Escherichia coli and Staphylococcus aureus on contaminated perilla leaves by Dielectric Barrier Discharge (DBD) plasma treatment. Ji SH; Ki SH; Ahn JH; Shin JH; Hong EJ; Kim YJ; Choi EH Arch Biochem Biophys; 2018 Apr; 643():32-41. PubMed ID: 29454864 [TBL] [Abstract][Full Text] [Related]
6. Effects of colistin on biofilm matrices of Escherichia coli and Staphylococcus aureus. Klinger-Strobel M; Stein C; Forstner C; Makarewicz O; Pletz MW Int J Antimicrob Agents; 2017 Apr; 49(4):472-479. PubMed ID: 28267594 [TBL] [Abstract][Full Text] [Related]
7. Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Seth AK; Geringer MR; Nguyen KT; Agnew SP; Dumanian Z; Galiano RD; Leung KP; Mustoe TA; Hong SJ Plast Reconstr Surg; 2013 Feb; 131(2):225-234. PubMed ID: 23357984 [TBL] [Abstract][Full Text] [Related]
8. In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids. Xu Z; Cheng C; Shen J; Lan Y; Hu S; Han W; Chu PK Bioelectrochemistry; 2018 Jun; 121():125-134. PubMed ID: 29413862 [TBL] [Abstract][Full Text] [Related]
9. Synergistic Effects of Combined Flavourzyme and Floating Electrode-Dielectric Barrier Discharge Plasma on Reduction of Kim SH; Roy PK; Park SY Microorganisms; 2024 Jun; 12(6):. PubMed ID: 38930569 [TBL] [Abstract][Full Text] [Related]
10. Methicillin resistance and biofilm production in clinical isolates of Staphylococcus aureus and coagulase-negative Staphylococcus in México. García A; Martínez C; Juárez RI; Téllez R; Paredes MA; Herrera MDR; Giono S Biomedica; 2019 Sep; 39(3):513-523. PubMed ID: 31584765 [TBL] [Abstract][Full Text] [Related]
11. Surface barrier discharges for Escherichia coli biofilm inactivation: Modes of action and the importance of UV radiation. Salgado BAB; Fabbri S; Dickenson A; Hasan MI; Walsh JL PLoS One; 2021; 16(3):e0247589. PubMed ID: 33730103 [TBL] [Abstract][Full Text] [Related]
12. Anti-biofilm activity of bacteriophages and lysins in chronic rhinosinusitis. Łusiak-Szelachowska M; Weber-Dąbrowska B; Żaczek M; Górski A Acta Virol; 2021; 65(2):127-140. PubMed ID: 34130464 [TBL] [Abstract][Full Text] [Related]
13. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Tawil N; Sacher E; Mandeville R; Meunier M Biosens Bioelectron; 2012; 37(1):24-9. PubMed ID: 22609555 [TBL] [Abstract][Full Text] [Related]
14. Microbiological and ultrastructural evaluation of bacteriophage 191219 against planktonic, intracellular and biofilm infection with Staphylococcus aureus. Mannala GK; Rupp M; Walter N; Brunotte M; Alagboso F; Docheva D; Brochhausen C; Alt V Eur Cell Mater; 2022 Feb; 43():66-78. PubMed ID: 35201606 [TBL] [Abstract][Full Text] [Related]
16. The Behavior of Staphylococcus aureus Dual-Species Biofilms Treated with Bacteriophage phiIPLA-RODI Depends on the Accompanying Microorganism. González S; Fernández L; Campelo AB; Gutiérrez D; Martínez B; Rodríguez A; García P Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27836851 [TBL] [Abstract][Full Text] [Related]
17. Chimeric analogs of human β-defensin 1 and θ-defensin disrupt pre-established bacterial biofilms. Mathew B; Olli S; Guru A; Nagaraj R Bioorg Med Chem Lett; 2017 Aug; 27(15):3264-3266. PubMed ID: 28642103 [TBL] [Abstract][Full Text] [Related]
18. Inactivation of Infectious Bacteria Using Nonthermal Biocompatible Plasma Cabinet Sterilizer. Akter M; Yadav DK; Ki SH; Choi EH; Han I Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171928 [TBL] [Abstract][Full Text] [Related]
19. Cuminaldehyde potentiates the antimicrobial actions of ciprofloxacin against Staphylococcus aureus and Escherichia coli. Monteiro-Neto V; de Souza CD; Gonzaga LF; da Silveira BC; Sousa NCF; Pontes JP; Santos DM; Martins WC; Pessoa JFV; Carvalho Júnior AR; Almeida VSS; de Oliveira NMT; de Araújo TS; Maria-Ferreira D; Mendes SJF; Ferro TAF; Fernandes ES PLoS One; 2020; 15(5):e0232987. PubMed ID: 32407399 [TBL] [Abstract][Full Text] [Related]
20. [THE FORMATION OF BIOFILM IN OPPORTUNISTIC MICROORGANISMS IN BLOOD PLASMA DEPENDING ON CONTENT OF IRON]. Leonov VV; Mironov AY Klin Lab Diagn; 2016 Jan; 61(1):52-4. PubMed ID: 27183731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]