These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 35563585)
1. Transcriptomic and Metabolomic Analyses of the Effects of Exogenous Trehalose on Heat Tolerance in Wheat. Luo Y; Wang Y; Xie Y; Gao Y; Li W; Lang S Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563585 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic and Metabolomic Analysis of the Effects of Exogenous Trehalose on Salt Tolerance in Watermelon ( Yuan G; Sun D; An G; Li W; Si W; Liu J; Zhu Y Cells; 2022 Jul; 11(15):. PubMed ID: 35954182 [TBL] [Abstract][Full Text] [Related]
3. Commonalities and Specificities in Wheat ( Luo D; Li Q; Pang F; Zhang W; Li Y; Xing Y; Dong D Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273221 [TBL] [Abstract][Full Text] [Related]
4. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Low Phosphorus Tolerance in Wheat Seedling. Li P; Ma X; Wang J; Yao L; Li B; Meng Y; Si E; Yang K; Shang X; Zhang X; Wang H Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834288 [TBL] [Abstract][Full Text] [Related]
5. Comparative transcriptomic and metabolic profiling provides insight into the mechanism by which the autophagy inhibitor 3-MA enhances salt stress sensitivity in wheat seedlings. Yue J; Wang Y; Jiao J; Wang H BMC Plant Biol; 2021 Dec; 21(1):577. PubMed ID: 34872497 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome profiling reveals the genes and pathways involved in thermo-tolerance in wheat (Triticum aestivum L.) genotype Raj 3765. Azameti MK; Ranjan A; Singh PK; Gaikwad K; Singh AK; Dalal M; Arora A; Rai V; Padaria JC Sci Rep; 2022 Sep; 12(1):14831. PubMed ID: 36050336 [TBL] [Abstract][Full Text] [Related]
7. Physiological and transcriptomic analyses reveal the molecular networks of responses induced by exogenous trehalose in plant. Shi Y; Sun H; Wang X; Jin W; Chen Q; Yuan Z; Yu H PLoS One; 2019; 14(5):e0217204. PubMed ID: 31116769 [TBL] [Abstract][Full Text] [Related]
8. Exogenously-supplied trehalose inhibits the growth of wheat seedlings under high temperature by affecting plant hormone levels and cell cycle processes. Luo Y; Liu X; Li W Plant Signal Behav; 2021 Jun; 16(6):1907043. PubMed ID: 33960273 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic Analysis of Heat Stress Response in Quan J; Li X; Li Z; Wu M; Zhu B; Hong SB; Shi J; Zhu Z; Xu L; Zang Y Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047402 [TBL] [Abstract][Full Text] [Related]
10. Physiological and Transcriptomic Analyses Reveal Exogenous Trehalose Is Involved in the Responses of Wheat Roots to High Temperature Stress. Luo Y; Xie Y; Li W; Wei M; Dai T; Li Z; Wang B Plants (Basel); 2021 Dec; 10(12):. PubMed ID: 34961115 [TBL] [Abstract][Full Text] [Related]
11. Exploring the Role of Li C; Zhao A; Yu Y; Cui C; Zeng Q; Shen W; Zhao Y; Wang F; Dong J; Gao X; Yang M Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38068906 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome characterization of candidate genes for heat tolerance in perennial ryegrass after exogenous methyl Jasmonate application. Nie G; Zhou J; Jiang Y; He J; Wang Y; Liao Z; Appiah C; Li D; Feng G; Huang L; Wang X; Zhang X BMC Plant Biol; 2022 Feb; 22(1):68. PubMed ID: 35151272 [TBL] [Abstract][Full Text] [Related]
13. Enhancing salt stress tolerance in wheat (Triticum aestivum) seedlings: insights from trehalose and mannitol. Alhudhaibi AM; Ibrahim MAR; Abd-Elaziz SMS; Farag HRM; Elsayed SM; Ibrahim HA; Hossain AS; Alharbi BM; Haouala F; Elkelish A; Srour HAM BMC Plant Biol; 2024 May; 24(1):472. PubMed ID: 38811894 [TBL] [Abstract][Full Text] [Related]
14. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.). Hu H; He J; Zhao J; Ou X; Li H; Ru Z Genes Genomics; 2018 Nov; 40(11):1199-1211. PubMed ID: 30315523 [TBL] [Abstract][Full Text] [Related]
15. Transcription-associated metabolomic profiling reveals the critical role of frost tolerance in wheat. Lv L; Dong C; Liu Y; Zhao A; Zhang Y; Li H; Chen X BMC Plant Biol; 2022 Jul; 22(1):333. PubMed ID: 35820806 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic and metabolomic perspectives for the growth of alfalfa (Medicago sativa L.) seedlings with the effect of vanadium exposure. Wu ZZ; Gan ZW; Zhang YX; Chen SB; Gan CD; Yang K; Yang JY Chemosphere; 2023 Sep; 336():139222. PubMed ID: 37343642 [TBL] [Abstract][Full Text] [Related]
17. Identification of Potential Genes Responsible for Thermotolerance in Wheat under High Temperature Stress. Su P; Jiang C; Qin H; Hu R; Feng J; Chang J; Yang G; He G Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30823586 [TBL] [Abstract][Full Text] [Related]
18. Effects of exogenous trehalose on filling characteristics and sugar component content of wheat under high temperature stress during the filling period. Cui GJ; Wang CW; He W; Li YX; Huang ZL; Zhang WJ; Ma SY; Fan YH Ying Yong Sheng Tai Xue Bao; 2023 Nov; 34(11):3021-3029. PubMed ID: 37997413 [TBL] [Abstract][Full Text] [Related]
19. Physiological and Transcriptome Analyses Reveal the Protective Effect of Exogenous Trehalose in Response to Heat Stress in Tea Plant ( Zheng S; Liu C; Zhou Z; Xu L; Lai Z Plants (Basel); 2024 May; 13(10):. PubMed ID: 38794411 [TBL] [Abstract][Full Text] [Related]
20. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10. Guo XL; Yuan SN; Zhang HN; Zhang YY; Zhang YJ; Wang GY; Li YQ; Li GL BMC Plant Biol; 2020 Aug; 20(1):364. PubMed ID: 32746866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]