These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35563639)

  • 1. Consecutive Aromatic Residues Are Required for Improved Efficacy of β-Sheet Breakers.
    Jarmuła A; Zubalska M; Stępkowski D
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-sheet breakers with consecutive phenylalanines: Insights into mechanism of dissolution of β-amyloid fibrils.
    Jarmuła A; Ludwiczak J; Stępkowski D
    Proteins; 2021 Jul; 89(7):762-780. PubMed ID: 33550630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the binding of the β-sheet breaker peptide LPFFD to the amyloid-β fibrils by aromatic modifications: A molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    Comput Biol Chem; 2021 Jun; 92():107471. PubMed ID: 33706107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying the key residues instrumental in imparting stability to amyloid beta protofibrils - a comparative study using MD simulations of 17-42 residues.
    Dutta MS; Basu S
    J Biomol Struct Dyn; 2021 Feb; 39(2):431-456. PubMed ID: 31900057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Norepinephrine Inhibits Alzheimer's Amyloid-β Peptide Aggregation and Destabilizes Amyloid-β Protofibrils: A Molecular Dynamics Simulation Study.
    Zou Y; Qian Z; Chen Y; Qian H; Wei G; Zhang Q
    ACS Chem Neurosci; 2019 Mar; 10(3):1585-1594. PubMed ID: 30605312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42.
    Andarzi Gargari S; Barzegar A; Tarinejad A
    PLoS One; 2018; 13(6):e0199541. PubMed ID: 29953467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ
    Saini RK; Shuaib S; Goyal D; Goyal B
    J Biomol Struct Dyn; 2019 Aug; 37(12):3183-3197. PubMed ID: 30582723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Destabilization of the Alzheimer's amyloid-β peptide by a proline-rich β-sheet breaker peptide: a molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    J Mol Model; 2021 Nov; 27(12):356. PubMed ID: 34796404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The β-sheet breakers and π-stacking.
    Jarmuła A; Stępkowski D
    J Pept Sci; 2013 Jun; 19(6):345-9. PubMed ID: 23526717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational design and evaluation of β-sheet breaker peptides for destabilizing Alzheimer's amyloid-β
    Shuaib S; Narang SS; Goyal D; Goyal B
    J Cell Biochem; 2019 Oct; 120(10):17935-17950. PubMed ID: 31162715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study.
    Sun Y; Qian Z; Wei G
    Phys Chem Chem Phys; 2016 May; 18(18):12582-91. PubMed ID: 27091578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1-42) fibrillation process.
    Hernández-Rodríguez M; Correa-Basurto J; Benitez-Cardoza CG; Resendiz-Albor AA; Rosales-Hernández MC
    Protein Sci; 2013 Oct; 22(10):1320-35. PubMed ID: 23904252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyproline chains destabilize the Alzheimer's amyloid-β protofibrils: A molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    J Mol Graph Model; 2019 Dec; 93():107456. PubMed ID: 31581064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destabilization of the Alzheimer's amyloid-β protofibrils by THC: A molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    J Mol Graph Model; 2021 Jun; 105():107889. PubMed ID: 33725642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity.
    Jin Y; Sun Y; Lei J; Wei G
    Phys Chem Chem Phys; 2018 Jun; 20(25):17208-17217. PubMed ID: 29900443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From monomer to fibril: Abeta-amyloid binding to Aducanumab antibody studied by molecular dynamics simulation.
    Frost CV; Zacharias M
    Proteins; 2020 Dec; 88(12):1592-1606. PubMed ID: 32666627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-sheet breakers for Alzheimer's disease therapy.
    Bieler S; Soto C
    Curr Drug Targets; 2004 Aug; 5(6):553-8. PubMed ID: 15270201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insight into E22Q-mutation-induced antiparallel-to-parallel β-sheet transition of Aβ
    Li X; Lei J; Qi R; Xie L; Wei G
    Phys Chem Chem Phys; 2019 Jul; 21(28):15686-15694. PubMed ID: 31271401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases.
    Kreutzer AG; Nowick JS
    Acc Chem Res; 2018 Mar; 51(3):706-718. PubMed ID: 29508987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.