These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35563726)

  • 1. Transcriptomic, Hormonomic and Metabolomic Analyses Highlighted the Common Modules Related to Photosynthesis, Sugar Metabolism and Cell Division in Parthenocarpic Tomato Fruits during Early Fruit Set.
    Kusano M; Worarad K; Fukushima A; Kamiya K; Mitani Y; Okazaki Y; Higashi Y; Nakabayashi R; Kobayashi M; Mori T; Nishizawa T; Takebayashi Y; Kojima M; Sakakibara H; Saito K; Hao S; Shinozaki Y; Okabe Y; Kimbara J; Ariizumi T; Ezura H
    Cells; 2022 Apr; 11(9):. PubMed ID: 35563726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development.
    Carrera E; Ruiz-Rivero O; Peres LE; Atares A; Garcia-Martinez JL
    Plant Physiol; 2012 Nov; 160(3):1581-96. PubMed ID: 22942390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism.
    Shinozaki Y; Hao S; Kojima M; Sakakibara H; Ozeki-Iida Y; Zheng Y; Fei Z; Zhong S; Giovannoni JJ; Rose JK; Okabe Y; Heta Y; Ezura H; Ariizumi T
    Plant J; 2015 Jul; 83(2):237-51. PubMed ID: 25996898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.).
    Li J; Wu Z; Cui L; Zhang T; Guo Q; Xu J; Jia L; Lou Q; Huang S; Li Z; Chen J
    Plant Cell Physiol; 2014 Jul; 55(7):1325-42. PubMed ID: 24733865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. microRNA159-targeted SlGAMYB transcription factors are required for fruit set in tomato.
    da Silva EM; Silva GFFE; Bidoia DB; da Silva Azevedo M; de Jesus FA; Pino LE; Peres LEP; Carrera E; López-Díaz I; Nogueira FTS
    Plant J; 2017 Oct; 92(1):95-109. PubMed ID: 28715118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.).
    Pomares-Viciana T; Del Río-Celestino M; Román B; Die J; Pico B; Gómez P
    BMC Plant Biol; 2019 Feb; 19(1):61. PubMed ID: 30727959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Interaction between DELLA and ARF/IAA Mediates Crosstalk between Gibberellin and Auxin Signaling to Control Fruit Initiation in Tomato.
    Hu J; Israeli A; Ori N; Sun TP
    Plant Cell; 2018 Aug; 30(8):1710-1728. PubMed ID: 30008445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin.
    Tang N; Deng W; Hu G; Hu N; Li Z
    PLoS One; 2015; 10(4):e0125355. PubMed ID: 25909657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibition of SlIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato.
    Kim JS; Ezura K; Lee J; Kojima M; Takebayashi Y; Sakakibara H; Ariizumi T; Ezura H
    J Plant Physiol; 2020 Sep; 252():153238. PubMed ID: 32707453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transcriptomic approach to identify regulatory genes involved in fruit set of wild-type and parthenocarpic tomato genotypes.
    Ruiu F; Picarella ME; Imanishi S; Mazzucato A
    Plant Mol Biol; 2015 Oct; 89(3):263-78. PubMed ID: 26319515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set.
    Pascual L; Blanca JM; Cañizares J; Nuez F
    BMC Plant Biol; 2009 May; 9():67. PubMed ID: 19480705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering of parthenocarpic tomato plants using transient SlIAA9 knockdown by novel tissue-specific promoters.
    Kim JS; Ezura K; Lee J; Ariizumi T; Ezura H
    Sci Rep; 2019 Dec; 9(1):18871. PubMed ID: 31827210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway.
    García-Hurtado N; Carrera E; Ruiz-Rivero O; López-Gresa MP; Hedden P; Gong F; García-Martínez JL
    J Exp Bot; 2012 Oct; 63(16):5803-13. PubMed ID: 22945942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling.
    Wang H; Schauer N; Usadel B; Frasse P; Zouine M; Hernould M; Latché A; Pech JC; Fernie AR; Bouzayen M
    Plant Cell; 2009 May; 21(5):1428-52. PubMed ID: 19435935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing of DELLA induces facultative parthenocarpy in tomato fruits.
    Martí C; Orzáez D; Ellul P; Moreno V; Carbonell J; Granell A
    Plant J; 2007 Dec; 52(5):865-76. PubMed ID: 17883372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops.
    Ezura K; Nomura Y; Ariizumi T
    J Exp Bot; 2023 Oct; 74(20):6254-6268. PubMed ID: 37279328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early anther ablation triggers parthenocarpic fruit development in tomato.
    Medina M; Roque E; Pineda B; Cañas L; Rodriguez-Concepción M; Beltrán JP; Gómez-Mena C
    Plant Biotechnol J; 2013 Aug; 11(6):770-9. PubMed ID: 23581527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and functional study of a mild allele of SlDELLA gene conferring the potential for improved yield in tomato.
    Shinozaki Y; Ezura K; Hu J; Okabe Y; Bénard C; Prodhomme D; Gibon Y; Sun TP; Ezura H; Ariizumi T
    Sci Rep; 2018 Aug; 8(1):12043. PubMed ID: 30104574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling.
    Liu S; Zhang Y; Feng Q; Qin L; Pan C; Lamin-Samu AT; Lu G
    Sci Rep; 2018 Feb; 8(1):2971. PubMed ID: 29445121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in tomato mediated by gibberellins.
    Serrani JC; Carrera E; Ruiz-Rivero O; Gallego-Giraldo L; Peres LE; García-Martínez JL
    Plant Physiol; 2010 Jun; 153(2):851-62. PubMed ID: 20388661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.