These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 35563727)
1. A Novel Attention-Mechanism Based Cox Survival Model by Exploiting Pan-Cancer Empirical Genomic Information. Meng X; Wang X; Zhang X; Zhang C; Zhang Z; Zhang K; Wang S Cells; 2022 Apr; 11(9):. PubMed ID: 35563727 [TBL] [Abstract][Full Text] [Related]
2. Improved survival analysis by learning shared genomic information from pan-cancer data. Kim S; Kim K; Choe J; Lee I; Kang J Bioinformatics; 2020 Jul; 36(Suppl_1):i389-i398. PubMed ID: 32657401 [TBL] [Abstract][Full Text] [Related]
3. Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations. Huang Z; Johnson TS; Han Z; Helm B; Cao S; Zhang C; Salama P; Rizkalla M; Yu CY; Cheng J; Xiang S; Zhan X; Zhang J; Huang K BMC Med Genomics; 2020 Apr; 13(Suppl 5):41. PubMed ID: 32241264 [TBL] [Abstract][Full Text] [Related]
5. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model. Matsuo K; Purushotham S; Jiang B; Mandelbaum RS; Takiuchi T; Liu Y; Roman LD Am J Obstet Gynecol; 2019 Apr; 220(4):381.e1-381.e14. PubMed ID: 30582927 [TBL] [Abstract][Full Text] [Related]
6. Cancer survival prognosis with Deep Bayesian Perturbation Cox Network. Zhang Z; Chai H; Wang Y; Pan Z; Yang Y Comput Biol Med; 2022 Feb; 141():105012. PubMed ID: 34785075 [TBL] [Abstract][Full Text] [Related]
7. A deep learning-based framework for lung cancer survival analysis with biomarker interpretation. Cui L; Li H; Hui W; Chen S; Yang L; Kang Y; Bo Q; Feng J BMC Bioinformatics; 2020 Mar; 21(1):112. PubMed ID: 32183709 [TBL] [Abstract][Full Text] [Related]
8. A Novel Cox Proportional Hazards Model for High-Dimensional Genomic Data in Cancer Prognosis. Huang HH; Liang Y IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1821-1830. PubMed ID: 31870990 [TBL] [Abstract][Full Text] [Related]
9. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer. Kim D; Li R; Dudek SM; Ritchie MD J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077 [TBL] [Abstract][Full Text] [Related]
10. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data. Zou M; Liu Z; Zhang XS; Wang Y Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859 [TBL] [Abstract][Full Text] [Related]
11. Analysis of genomic and transcriptomic variations as prognostic signature for lung adenocarcinoma. Zengin T; Önal-Süzek T BMC Bioinformatics; 2020 Sep; 21(Suppl 14):368. PubMed ID: 32998690 [TBL] [Abstract][Full Text] [Related]
12. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction. Liu C; Wang X; Genchev GZ; Lu H Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406 [TBL] [Abstract][Full Text] [Related]
13. Multi-Constraint Latent Representation Learning for Prognosis Analysis Using Multi-Modal Data. Ning Z; Lin Z; Xiao Q; Du D; Feng Q; Chen W; Zhang Y IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3737-3750. PubMed ID: 34596560 [TBL] [Abstract][Full Text] [Related]
14. Violations of proportional hazard assumption in Cox regression model of transcriptomic data in TCGA pan-cancer cohorts. Zeng Z; Gao Y; Li J; Zhang G; Sun S; Wu Q; Gong Y; Xie C Comput Struct Biotechnol J; 2022; 20():496-507. PubMed ID: 35070171 [TBL] [Abstract][Full Text] [Related]
15. Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data. Hao J; Kim Y; Mallavarapu T; Oh JH; Kang M BMC Med Genomics; 2019 Dec; 12(Suppl 10):189. PubMed ID: 31865908 [TBL] [Abstract][Full Text] [Related]
16. Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features. Xie G; Dong C; Kong Y; Zhong JF; Li M; Wang K Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30901858 [TBL] [Abstract][Full Text] [Related]
17. Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L1/2 regularization. Liang Y; Chai H; Liu XY; Xu ZB; Zhang H; Leung KS BMC Med Genomics; 2016 Mar; 9():11. PubMed ID: 26932592 [TBL] [Abstract][Full Text] [Related]
18. Stratified neural networks in a time-to-event setting. Kuruc F; Binder H; Hess M Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34585236 [TBL] [Abstract][Full Text] [Related]
19. Two-stage Cox-nnet: biologically interpretable neural-network model for prognosis prediction and its application in liver cancer survival using histopathology and transcriptomic data. Zhan Z; Jing Z; He B; Hosseini N; Westerhoff M; Choi EY; Garmire LX NAR Genom Bioinform; 2021 Mar; 3(1):lqab015. PubMed ID: 33778491 [TBL] [Abstract][Full Text] [Related]
20. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Yousefi S; Amrollahi F; Amgad M; Dong C; Lewis JE; Song C; Gutman DA; Halani SH; Velazquez Vega JE; Brat DJ; Cooper LAD Sci Rep; 2017 Sep; 7(1):11707. PubMed ID: 28916782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]