BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 35563836)

  • 1. Consequences of Chromosome Loss: Why Do Cells Need Each Chromosome Twice?
    Chunduri NK; Barthel K; Storchova Z
    Cells; 2022 May; 11(9):. PubMed ID: 35563836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer cells preferentially lose small chromosomes.
    Duijf PH; Schultz N; Benezra R
    Int J Cancer; 2013 May; 132(10):2316-26. PubMed ID: 23124507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-chromosome Gains Commonly Function as Tumor Suppressors.
    Sheltzer JM; Ko JH; Replogle JM; Habibe Burgos NC; Chung ES; Meehl CM; Sayles NM; Passerini V; Storchova Z; Amon A
    Cancer Cell; 2017 Feb; 31(2):240-255. PubMed ID: 28089890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proliferative advantage of specific aneuploid cells drives evolution of tumor karyotypes.
    Ban I; Tomašić L; Trakala M; Tolić IM; Pavin N
    Biophys J; 2023 Feb; 122(4):632-645. PubMed ID: 36654508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryos whose polar bodies contain isolated reciprocal chromosome aneuploidy are almost always euploid.
    Forman EJ; Treff NR; Stevens JM; Garnsey HM; Katz-Jaffe MG; Scott RT; Schoolcraft WB
    Hum Reprod; 2013 Feb; 28(2):502-8. PubMed ID: 23169867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale analysis of chromosomal aberrations in cancer karyotypes reveals two distinct paths to aneuploidy.
    Ozery-Flato M; Linhart C; Trakhtenbrot L; Izraeli S; Shamir R
    Genome Biol; 2011 Jun; 12(6):R61. PubMed ID: 21714908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Causes and consequences of aneuploidy in cancer.
    Gordon DJ; Resio B; Pellman D
    Nat Rev Genet; 2012 Jan; 13(3):189-203. PubMed ID: 22269907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KaryoCreate: A CRISPR-based technology to study chromosome-specific aneuploidy by targeting human centromeres.
    Bosco N; Goldberg A; Zhao X; Mays JC; Cheng P; Johnson AF; Bianchi JJ; Toscani C; Di Tommaso E; Katsnelson L; Annuar D; Mei S; Faitelson RE; Pesselev IY; Mohamed KS; Mermerian A; Camacho-Hernandez EM; Gionco CA; Manikas J; Tseng YS; Sun Z; Fani S; Keegan S; Lippman SM; Fenyö D; Giunta S; Santaguida S; Davoli T
    Cell; 2023 Apr; 186(9):1985-2001.e19. PubMed ID: 37075754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive protein dosage compensation in aneuploid human cancers.
    Schukken KM; Sheltzer JM
    Genome Res; 2022 Jul; 32(7):1254-1270. PubMed ID: 35701073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fitness trade-off explains the early fate of yeast aneuploids with chromosome gains.
    Pompei S; Cosentino Lagomarsino M
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2211687120. PubMed ID: 37018197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence in situ hybridization analysis of aneuploidization patterns in monoclonal gammopathy of undetermined significance versus multiple myeloma and plasma cell leukemia.
    Rasillo A; Tabernero MD; Sánchez ML; Pérez de Andrés M; Martín Ayuso M; Hernández J; Moro MJ; Fernández-Calvo J; Sayagués JM; Bortoluci A; San Miguel JF; Orfao A
    Cancer; 2003 Feb; 97(3):601-9. PubMed ID: 12548602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singling Out Chromosome Gains in Tumor Evolution.
    Naylor RM; van Deursen JM
    Cancer Cell; 2017 Feb; 31(2):165-166. PubMed ID: 28196590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cytogenetic constitution of human blastocysts: insights from comprehensive chromosome screening strategies.
    Fragouli E; Munne S; Wells D
    Hum Reprod Update; 2019 Jan; 25(1):15-33. PubMed ID: 30395265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical chromosome alterations in colorectal carcinomas detected by fluorescence in situ hybridization. Relationship to 17p and 18q allelic losses.
    Ooi A; Huang CD; Mai M; Nakanishi I
    Virchows Arch; 1996 Jul; 428(4-5):243-51. PubMed ID: 8764933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permission to pass: on the role of p53 as a gatekeeper for aneuploidy.
    Marques JF; Kops GJPL
    Chromosome Res; 2023 Oct; 31(4):31. PubMed ID: 37864038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated tolerance to aneuploidy in cancer cells: estimating the fitness effects of chromosome number alterations by in silico modelling of somatic genome evolution.
    Valind A; Jin Y; Gisselsson D
    PLoS One; 2013; 8(7):e70445. PubMed ID: 23894657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving the chromosome puzzle of aneuploidy in cancer.
    Chiarle R
    Genes Dev; 2021 Aug; 35(15-16):1073-1075. PubMed ID: 34341000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function.
    Li L; McCormack AA; Nicholson JM; Fabarius A; Hehlmann R; Sachs RK; Duesberg PH
    Cancer Genet Cytogenet; 2009 Jan; 188(1):1-25. PubMed ID: 19061776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence in situ hybridization study of aneuploidy of chromosomes 7, 10, X, and Y in primary and secondary glioblastomas.
    Amalfitano G; Chatel M; Paquis P; Michiels JF
    Cancer Genet Cytogenet; 2000 Jan; 116(1):6-9. PubMed ID: 10616524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of numeric abnormalities of X, Y, 18, and 16 chromosomes in preimplantation human embryos before transfer.
    Munné S; Sultan KM; Weier HU; Grifo JA; Cohen J; Rosenwaks Z
    Am J Obstet Gynecol; 1995 Apr; 172(4 Pt 1):1191-9; discussion 1199-201. PubMed ID: 7726256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.