BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 35563938)

  • 1. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil.
    Ren X; Liu Y; Fan C; Hong H; Wu W; Zhang W; Wang Y
    Foods; 2022 Apr; 11(9):. PubMed ID: 35563938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries.
    Remize M; Brunel Y; Silva JL; Berthon JY; Filaire E
    Mar Drugs; 2021 Feb; 19(2):. PubMed ID: 33670628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Health Benefits, Food Applications, and Sustainability of Microalgae-Derived N-3 PUFA.
    Liu Y; Ren X; Fan C; Wu W; Zhang W; Wang Y
    Foods; 2022 Jun; 11(13):. PubMed ID: 35804698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies.
    Steinrücken P; Erga SR; Mjøs SA; Kleivdal H; Prestegard SK
    Algal Res; 2017 Sep; 26():392-401. PubMed ID: 28989862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds.
    Sprague M; Betancor MB; Tocher DR
    Biotechnol Lett; 2017 Nov; 39(11):1599-1609. PubMed ID: 28721583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diets enriched in menhaden fish oil, seal oil, or shark liver oil have distinct effects on the lipid and fatty-acid composition of guinea pig heart.
    Murphy MG; Wright V; Ackman RG; Horackova M
    Mol Cell Biochem; 1997 Dec; 177(1-2):257-69. PubMed ID: 9450671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp.
    Chi G; Xu Y; Cao X; Li Z; Cao M; Chisti Y; He N
    Biotechnol Adv; 2022; 55():107897. PubMed ID: 34974158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of EPA and DHA in aquatic ecosystems and their transfer to the land.
    Gladyshev MI; Sushchik NN; Makhutova ON
    Prostaglandins Other Lipid Mediat; 2013 Dec; 107():117-26. PubMed ID: 23500063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production.
    Adarme-Vega TC; Lim DK; Timmins M; Vernen F; Li Y; Schenk PM
    Microb Cell Fact; 2012 Jul; 11():96. PubMed ID: 22830315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae.
    Aussant J; Guihéneuf F; Stengel DB
    Appl Microbiol Biotechnol; 2018 Jun; 102(12):5279-5297. PubMed ID: 29696337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supplementation of DHA-rich microalgal oil or fish oil during the suckling period in mildly n-3 fatty acid-deficient rat pups.
    Kimura F; Ito S; Endo Y; Doisaki N; Koriyama T; Miyazawa T; Fujimoto K
    Lipids; 2011 Dec; 46(12):1101-10. PubMed ID: 21901511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri.
    Guihéneuf F; Stengel DB
    Mar Drugs; 2013 Oct; 11(11):4246-66. PubMed ID: 24177672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversed-phase high-performance liquid chromatography purification of methyl esters of C(16)-C(28) polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)].
    Mansour MP
    J Chromatogr A; 2005 Dec; 1097(1-2):54-8. PubMed ID: 16298185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris.
    Tanaka T; Yabuuchi T; Maeda Y; Nojima D; Matsumoto M; Yoshino T
    Bioresour Technol; 2017 Dec; 245(Pt A):567-572. PubMed ID: 28898857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds.
    López-Pedrouso M; Lorenzo JM; Cantalapiedra J; Zapata C; Franco JM; Franco D
    Adv Food Nutr Res; 2020; 92():127-185. PubMed ID: 32402443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acids in plasma, white and red blood cells, and tissues after oral or intravenous administration of fish oil in rats.
    Barros KV; Carvalho PO; Cassulino AP; Andrade I; West AL; Miles EA; Calder PC; Silveira VL
    Clin Nutr; 2013 Dec; 32(6):993-8. PubMed ID: 23541913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microalgae as a Source for VLC-PUFA Production.
    Khozin-Goldberg I; Leu S; Boussiba S
    Subcell Biochem; 2016; 86():471-510. PubMed ID: 27023247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of radiolabeled substrates to determine the desaturase and elongase activities involved in eicosapentaenoic acid and docosahexaenoic acid biosynthesis in the marine microalga Pavlova lutheri.
    Guihéneuf F; Ulmann L; Mimouni V; Tremblin G
    Phytochemistry; 2013 Jun; 90():43-9. PubMed ID: 23528573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish?
    Lenihan-Geels G; Bishop KS; Ferguson LR
    Nutrients; 2013 Apr; 5(4):1301-15. PubMed ID: 23598439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.