BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35564107)

  • 1. Face-to-Face Assembly of Ag Nanoplates on Filter Papers for Pesticide Detection by Surface-Enhanced Raman Spectroscopy.
    Jiao S; Liu Y; Wang S; Wang S; Ma F; Yuan H; Zhou H; Zheng G; Zhang Y; Dai K; Liu C
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel paper rag as 'D-SERS' substrate for detection of pesticide residues at various peels.
    Zhu Y; Li M; Yu D; Yang L
    Talanta; 2014 Oct; 128():117-24. PubMed ID: 25059138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of silver nanoplates on electrospun fibers via tollens reaction for SERS sensing of pesticide residues.
    Li D; Gu Y; Feng Y; Xu X; Wang M; Liu Y
    Mikrochim Acta; 2020 Sep; 187(10):560. PubMed ID: 32915335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water.
    Fateixa S; Raposo M; Nogueira HIS; Trindade T
    Talanta; 2018 May; 182():558-566. PubMed ID: 29501193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique.
    Feng Y; Wang X; Chang Y; Guo J; Wang C
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):116-128. PubMed ID: 35987151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile and robust fabrication of hierarchical Au nanorods/Ag nanowire SERS substrates for the sensitive detection of dyes and pesticides.
    Wang S; Sun B; Jiang H; Jin Y; Feng J; An F; Wang H; Xu W
    Anal Methods; 2022 Mar; 14(10):1041-1050. PubMed ID: 35193142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-cost and flexible paper-based plasmonic nanostructure for a highly sensitive SERS substrate.
    Dong J; Cao Y; Yuan J; Wu H; Zhao Y; Li C; Han Q; Gao W; Wang Y; Qi J
    Appl Opt; 2023 Jan; 62(3):560-565. PubMed ID: 36821258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate.
    Huo D; Chen B; Meng G; Huang Z; Li M; Lei Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50713-50720. PubMed ID: 33112614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible 3D Substrate of Ag Nanoparticle-Loaded Carbon Aerogels with Outstanding Surface-Enhanced Raman Scattering Performance.
    Zheng C; Yu J; Dou L; Wang Z; Huang Z; Li X; Hu X; Li Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29609-29617. PubMed ID: 37285222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step fabrication of flexible polyamide@Ag-dodecanethiol membranes for highly sensitive SERS detection of thiram.
    Li L; Zhang T; Zhang L; Li W; Xu T; Wang L; Liu C; Li W; Li J; Lu R
    Nanotechnology; 2023 Dec; 35(10):. PubMed ID: 38035399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver nanostar films for surface-enhanced Raman spectroscopy (SERS) of the pesticide imidacloprid.
    Abu Bakar N; Shapter JG
    Heliyon; 2023 Mar; 9(3):e14686. PubMed ID: 36994401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants.
    Alyami A; Quinn AJ; Iacopino D
    Talanta; 2019 Aug; 201():58-64. PubMed ID: 31122461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.
    Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y
    ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver nanodendrites for ultralow detection of thiram based on surface-enhanced Raman spectroscopy.
    Verma AK; Soni RK
    Nanotechnology; 2019 Sep; 30(38):385502. PubMed ID: 31181546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films.
    Tang L; Liu Y; Liu G; Chen Q; Li Y; Shi L; Liu Z; Liu X
    Nanoscale Res Lett; 2019 Mar; 14(1):94. PubMed ID: 30868395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core-shell nanospheres for reliable quantitative SERS measurements.
    Lin S; Lin X; Han S; Liu Y; Hasi W; Wang L
    Anal Chim Acta; 2020 Apr; 1108():167-176. PubMed ID: 32222238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale Fabrication of Ultrasensitive and Uniform Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Pesticides.
    Zhu J; Lin G; Wu M; Chen Z; Lu P; Wu W
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30002295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array.
    Zhang W; Xue T; Zhang L; Lu F; Liu M; Meng C; Mao D; Mei T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection.
    Li J; Wang Q; Wang J; Li M; Zhang X; Luan L; Li P; Xu W
    Anal Bioanal Chem; 2021 Jul; 413(16):4207-4215. PubMed ID: 33987702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures.
    Liu K; Gong T; Luo Y; Kong W; Yue W; Wang C; Luo X
    Opt Express; 2023 May; 31(10):15848-15863. PubMed ID: 37157676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.