These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 35564107)
1. Face-to-Face Assembly of Ag Nanoplates on Filter Papers for Pesticide Detection by Surface-Enhanced Raman Spectroscopy. Jiao S; Liu Y; Wang S; Wang S; Ma F; Yuan H; Zhou H; Zheng G; Zhang Y; Dai K; Liu C Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564107 [TBL] [Abstract][Full Text] [Related]
2. A novel paper rag as 'D-SERS' substrate for detection of pesticide residues at various peels. Zhu Y; Li M; Yu D; Yang L Talanta; 2014 Oct; 128():117-24. PubMed ID: 25059138 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of silver nanoplates on electrospun fibers via tollens reaction for SERS sensing of pesticide residues. Li D; Gu Y; Feng Y; Xu X; Wang M; Liu Y Mikrochim Acta; 2020 Sep; 187(10):560. PubMed ID: 32915335 [TBL] [Abstract][Full Text] [Related]
4. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water. Fateixa S; Raposo M; Nogueira HIS; Trindade T Talanta; 2018 May; 182():558-566. PubMed ID: 29501193 [TBL] [Abstract][Full Text] [Related]
5. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique. Feng Y; Wang X; Chang Y; Guo J; Wang C J Colloid Interface Sci; 2022 Dec; 628(Pt B):116-128. PubMed ID: 35987151 [TBL] [Abstract][Full Text] [Related]
6. Facile and robust fabrication of hierarchical Au nanorods/Ag nanowire SERS substrates for the sensitive detection of dyes and pesticides. Wang S; Sun B; Jiang H; Jin Y; Feng J; An F; Wang H; Xu W Anal Methods; 2022 Mar; 14(10):1041-1050. PubMed ID: 35193142 [TBL] [Abstract][Full Text] [Related]
7. Low-cost and flexible paper-based plasmonic nanostructure for a highly sensitive SERS substrate. Dong J; Cao Y; Yuan J; Wu H; Zhao Y; Li C; Han Q; Gao W; Wang Y; Qi J Appl Opt; 2023 Jan; 62(3):560-565. PubMed ID: 36821258 [TBL] [Abstract][Full Text] [Related]
8. Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate. Huo D; Chen B; Meng G; Huang Z; Li M; Lei Y ACS Appl Mater Interfaces; 2020 Nov; 12(45):50713-50720. PubMed ID: 33112614 [TBL] [Abstract][Full Text] [Related]
9. Flexible 3D Substrate of Ag Nanoparticle-Loaded Carbon Aerogels with Outstanding Surface-Enhanced Raman Scattering Performance. Zheng C; Yu J; Dou L; Wang Z; Huang Z; Li X; Hu X; Li Y ACS Appl Mater Interfaces; 2023 Jun; 15(24):29609-29617. PubMed ID: 37285222 [TBL] [Abstract][Full Text] [Related]
10. One-step fabrication of flexible polyamide@Ag-dodecanethiol membranes for highly sensitive SERS detection of thiram. Li L; Zhang T; Zhang L; Li W; Xu T; Wang L; Liu C; Li W; Li J; Lu R Nanotechnology; 2023 Dec; 35(10):. PubMed ID: 38035399 [TBL] [Abstract][Full Text] [Related]
11. Silver nanostar films for surface-enhanced Raman spectroscopy (SERS) of the pesticide imidacloprid. Abu Bakar N; Shapter JG Heliyon; 2023 Mar; 9(3):e14686. PubMed ID: 36994401 [TBL] [Abstract][Full Text] [Related]
12. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants. Alyami A; Quinn AJ; Iacopino D Talanta; 2019 Aug; 201():58-64. PubMed ID: 31122461 [TBL] [Abstract][Full Text] [Related]
13. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants. Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365 [TBL] [Abstract][Full Text] [Related]
14. Silver nanodendrites for ultralow detection of thiram based on surface-enhanced Raman spectroscopy. Verma AK; Soni RK Nanotechnology; 2019 Sep; 30(38):385502. PubMed ID: 31181546 [TBL] [Abstract][Full Text] [Related]
15. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films. Tang L; Liu Y; Liu G; Chen Q; Li Y; Shi L; Liu Z; Liu X Nanoscale Res Lett; 2019 Mar; 14(1):94. PubMed ID: 30868395 [TBL] [Abstract][Full Text] [Related]
16. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core-shell nanospheres for reliable quantitative SERS measurements. Lin S; Lin X; Han S; Liu Y; Hasi W; Wang L Anal Chim Acta; 2020 Apr; 1108():167-176. PubMed ID: 32222238 [TBL] [Abstract][Full Text] [Related]
17. Large-Scale Fabrication of Ultrasensitive and Uniform Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Pesticides. Zhu J; Lin G; Wu M; Chen Z; Lu P; Wu W Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30002295 [TBL] [Abstract][Full Text] [Related]
18. Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array. Zhang W; Xue T; Zhang L; Lu F; Liu M; Meng C; Mao D; Mei T Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540010 [TBL] [Abstract][Full Text] [Related]
19. Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection. Li J; Wang Q; Wang J; Li M; Zhang X; Luan L; Li P; Xu W Anal Bioanal Chem; 2021 Jul; 413(16):4207-4215. PubMed ID: 33987702 [TBL] [Abstract][Full Text] [Related]
20. Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures. Liu K; Gong T; Luo Y; Kong W; Yue W; Wang C; Luo X Opt Express; 2023 May; 31(10):15848-15863. PubMed ID: 37157676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]