These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 35564159)
41. Excess-Methane CO Świrk Da Costa K; Summa P; Gopakumar J; van Valen Y; Da Costa P; Rønning M Energy Fuels; 2023 Dec; 37(23):18952-18967. PubMed ID: 38094908 [TBL] [Abstract][Full Text] [Related]
42. Metal Carbide as A Light-Harvesting and Anticoking Catalysis Support for Dry Reforming of Methane. Takeda K; Yamaguchi A; Cho Y; Anjaneyulu O; Fujita T; Abe H; Miyauchi M Glob Chall; 2020 Jan; 4(1):1900067. PubMed ID: 31956431 [TBL] [Abstract][Full Text] [Related]
43. Coking-resistant dry reforming of methane over Ni/γ-Al Yang B; Deng J; Li H; Yan T; Zhang J; Zhang D iScience; 2021 Jul; 24(7):102747. PubMed ID: 34278257 [TBL] [Abstract][Full Text] [Related]
44. Harnessing Strong Metal-Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction. Jeon OS; Lee H; Lee KS; Paidi VK; Ji Y; Kwon OC; Kim JP; Myung JH; Park SY; Yoo YJ; Lee JG; Lee SY; Shul YG ACS Appl Mater Interfaces; 2022 Mar; 14(10):12140-12148. PubMed ID: 35238550 [TBL] [Abstract][Full Text] [Related]
45. Tiny Ni particles dispersed in platelet SBA-15 materials induce high efficiency for CO Liu MH; Chen HA; Chen CS; Wu JH; Wu HC; Yang CM Nanoscale; 2019 Nov; 11(43):20741-20753. PubMed ID: 31650145 [TBL] [Abstract][Full Text] [Related]
46. Nickel Supported on Mesoporous Alumina for Dry Reforming of Methane: Combustion Method. Noh YS; Yang EH; Lim SS; Lee KY; Kim SW; Moon DJ J Nanosci Nanotechnol; 2017 Apr; 17(4):2545-549. PubMed ID: 29652123 [TBL] [Abstract][Full Text] [Related]
47. Nanostructured Nickel Aluminate as a Key Intermediate for the Production of Highly Dispersed and Stable Nickel Nanoparticles Supported within Mesoporous Alumina for Dry Reforming of Methane. Karam L; Reboul J; El Hassan N; Nelayah J; Massiani P Molecules; 2019 Nov; 24(22):. PubMed ID: 31739418 [TBL] [Abstract][Full Text] [Related]
48. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases. Saad JM; Williams PT Waste Manag; 2016 Dec; 58():214-220. PubMed ID: 27650631 [TBL] [Abstract][Full Text] [Related]
49. Dry Reforming of CH Cheng F; Duan X; Xie K Angew Chem Int Ed Engl; 2021 Aug; 60(34):18792-18799. PubMed ID: 34101335 [TBL] [Abstract][Full Text] [Related]
50. Silica-Enveloped 2D-Sheet-to-Nanocrystals Conversion for Resilient Catalytic Dry Reforming of Methane. Jang SW; Dutta S; Kumar A; Kim SM; You YW; Lee IS Small; 2021 Aug; 17(34):e2102851. PubMed ID: 34263553 [TBL] [Abstract][Full Text] [Related]
51. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane. Li L; Chen J; Zhang Y; Sun J; Zou G Environ Sci Pollut Res Int; 2022 May; 29(25):37685-37699. PubMed ID: 35066826 [TBL] [Abstract][Full Text] [Related]
52. Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition. Joo S; Seong A; Kwon O; Kim K; Lee JH; Gorte RJ; Vohs JM; Han JW; Kim G Sci Adv; 2020 Aug; 6(35):eabb1573. PubMed ID: 32923635 [TBL] [Abstract][Full Text] [Related]
53. Nanoscaled Oxygen Carrier-Driven Chemical Looping for Carbon Neutrality: Opportunities and Challenges. Sunny AA; Meng Q; Kumar S; Joshi R; Fan LS Acc Chem Res; 2023 Dec; 56(23):3404-3416. PubMed ID: 37956385 [TBL] [Abstract][Full Text] [Related]
54. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834 [TBL] [Abstract][Full Text] [Related]
55. An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst. Liao X; Gerdts R; Parker SF; Chi L; Zhao Y; Hill M; Guo J; Jones MO; Jiang Z Phys Chem Chem Phys; 2016 Jun; 18(26):17311-9. PubMed ID: 27326792 [TBL] [Abstract][Full Text] [Related]
56. Highly Dispersed Nickel-Containing Mesoporous Silica with Superior Stability in Carbon Dioxide Reforming of Methane: The Effect of Anchoring. Cai W; Ye L; Zhang L; Ren Y; Yue B; Chen X; He H Materials (Basel); 2014 Mar; 7(3):2340-2355. PubMed ID: 28788570 [TBL] [Abstract][Full Text] [Related]
57. A Review on Bimetallic Nickel-Based Catalysts for CO Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875 [TBL] [Abstract][Full Text] [Related]
58. In Situ Control of the Eluted Ni Nanoparticles from Highly Doped Perovskite for Effective Methane Dry Reforming. Kim H; Mane R; Han K; Kim H; Lee C; Jeon Y Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234453 [TBL] [Abstract][Full Text] [Related]
59. A General Route to Flame Aerosol Synthesis and In Situ Functionalization of Mesoporous Silica. Liu S; Dun C; Chen J; Rao S; Shah M; Wei J; Chen K; Xuan Z; Kyriakidou EA; Urban JJ; Swihart MT Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202206870. PubMed ID: 35773200 [TBL] [Abstract][Full Text] [Related]