These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 35564225)
21. "Soft" oxidative coupling of methane to ethylene: Mechanistic insights from combined experiment and theory. Liu S; Udyavara S; Zhang C; Peter M; Lohr TL; Dravid VP; Neurock M; Marks TJ Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074750 [TBL] [Abstract][Full Text] [Related]
22. Experimental and theoretical investigation of oxidative methane activation on Pd-Pt catalysts. Qi W; Huang Z; Chen Z; Fu L; Zhang Z RSC Adv; 2019 Apr; 9(20):11385-11395. PubMed ID: 35520245 [TBL] [Abstract][Full Text] [Related]
23. Noble Metal-Free FeOOH/Li Zeng Y; Luo X; Li F; Huang A; Wu H; Xu GQ; Wang SL Environ Sci Technol; 2021 Jun; 55(11):7711-7720. PubMed ID: 34003010 [TBL] [Abstract][Full Text] [Related]
24. Machine-Learning-Accelerated Catalytic Activity Predictions of Transition Metal Phthalocyanine Dual-Metal-Site Catalysts for CO Wan X; Zhang Z; Niu H; Yin Y; Kuai C; Wang J; Shao C; Guo Y J Phys Chem Lett; 2021 Jul; 12(26):6111-6118. PubMed ID: 34170687 [TBL] [Abstract][Full Text] [Related]
25. Methane Activation by Gas Phase Atomic Clusters. Zhao YX; Li ZY; Yang Y; He SG Acc Chem Res; 2018 Nov; 51(11):2603-2610. PubMed ID: 30289247 [TBL] [Abstract][Full Text] [Related]
26. Fundamental insight into electrochemical oxidation of methane towards methanol on transition metal oxides. Prajapati A; Collins BA; Goodpaster JD; Singh MR Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33597304 [TBL] [Abstract][Full Text] [Related]
27. Engineering the reactivity of metal catalysts: a model study of methane dehydrogenation on Rh(111). Kokalj A; Bonini N; Sbraccia C; de Gironcoli S; Baroni S J Am Chem Soc; 2004 Dec; 126(51):16732-3. PubMed ID: 15612705 [TBL] [Abstract][Full Text] [Related]
28. Methane to Methanol Conversion Facilitated by Anionic Transition Metal Centers: The Case of Fe, Ni, Pd, and Pt. Sader S; Miliordos E J Phys Chem A; 2021 Mar; 125(11):2364-2373. PubMed ID: 33710883 [TBL] [Abstract][Full Text] [Related]
29. Low Temperature Activation of Methane on Metal-Oxides and Complex Interfaces: Insights from Surface Science. Senanayake SD; Rodriguez JA; Weaver JF Acc Chem Res; 2020 Aug; 53(8):1488-1497. PubMed ID: 32659076 [TBL] [Abstract][Full Text] [Related]
30. Phosphorene-Supported Transition-Metal Dimer for Effective N Tang Q; Jiang DE Chemphyschem; 2019 Nov; 20(22):3141-3146. PubMed ID: 31016826 [TBL] [Abstract][Full Text] [Related]
31. Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts. Alcala R; Shabaker JW; Huber GW; Sanchez-Castillo MA; Dumesic JA J Phys Chem B; 2005 Feb; 109(6):2074-85. PubMed ID: 16851198 [TBL] [Abstract][Full Text] [Related]
32. Catalytic conversion of methane to methanol using Cu-zeolites. Alayon EM; Nachtegaal M; Ranocchiari M; van Bokhoven JA Chimia (Aarau); 2012; 66(9):668-74. PubMed ID: 23211724 [TBL] [Abstract][Full Text] [Related]
33. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Upham DC; Agarwal V; Khechfe A; Snodgrass ZR; Gordon MJ; Metiu H; McFarland EW Science; 2017 Nov; 358(6365):917-921. PubMed ID: 29146810 [TBL] [Abstract][Full Text] [Related]
34. Novel Design Strategy of High Activity Electrocatalysts toward Nitrogen Reduction Reaction via Boron-Transition-Metal Hybrid Double-Atom Catalysts. Wu Y; He C; Zhang W ACS Appl Mater Interfaces; 2021 Oct; 13(40):47520-47529. PubMed ID: 34585912 [TBL] [Abstract][Full Text] [Related]
35. First-principles theoretical study on dry reforming of methane over perfect and boron-vacancy-containing h-BN sheet-supported Ni catalysts. Zhang Y; Yao YF; Qiao YY; Wang GC Phys Chem Chem Phys; 2021 Jan; 23(1):617-627. PubMed ID: 33331372 [TBL] [Abstract][Full Text] [Related]
36. Conversion of CH Yang Y; Zhao YX; He SG Chemistry; 2022 Jun; 28(33):e202200062. PubMed ID: 35419859 [TBL] [Abstract][Full Text] [Related]
37. Methane activation on nickel oxide clusters with a concerted mechanism: a density functional theory study of the effect of silica support. Xi Y; Chen B; Lin X; Wang C; Fu H J Mol Model; 2016 Apr; 22(4):79. PubMed ID: 26979607 [TBL] [Abstract][Full Text] [Related]
38. Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO Wu X; Xu L; Chen M; Lv C; Wen X; Cui Y; Wu CE; Yang B; Miao Z; Hu X Front Chem; 2020; 8():581923. PubMed ID: 33195071 [TBL] [Abstract][Full Text] [Related]
39. Screening silica-confined single-atom catalysts for nonoxidative conversion of methane. He SY; Li TH; Huang ZQ; Liu Y; Li J; Chang CR J Chem Phys; 2021 May; 154(17):174706. PubMed ID: 34241060 [TBL] [Abstract][Full Text] [Related]
40. Selective Methane Oxidation to Methanol on ZnO/Cu Huang E; Orozco I; Ramírez PJ; Liu Z; Zhang F; Mahapatra M; Nemšák S; Senanayake SD; Rodriguez JA; Liu P J Am Chem Soc; 2021 Nov; 143(45):19018-19032. PubMed ID: 34735767 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]