These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35564255)

  • 41. Original Approach to Synthesize TiO
    Navarro-Gázquez PJ; Muñoz-Portero MJ; Blasco-Tamarit E; Sánchez-Tovar R; Fernández-Domene RM; García-Antón J
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771967
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting.
    Ma Y; Shinde PS; Li X; Pan S
    ACS Omega; 2019 Oct; 4(17):17257-17268. PubMed ID: 31656900
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of the nano-tubular anodic TiO2 buffer layer on bioactive hydroxyapatite coating.
    Piao Z; Qiu J; Wu Y; Park SJ; He W; Timur A; Ryu SC; Kim HK; Hwang YH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):286-90. PubMed ID: 21446441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iron Pyrite/Titanium Dioxide Photoanode for Extended Near Infrared Light Harvesting in a Photoelectrochemical Cell.
    Wang DY; Li CH; Li SS; Kuo TR; Tsai CM; Chen TR; Wang YC; Chen CW; Chen CC
    Sci Rep; 2016 Feb; 6():20397. PubMed ID: 26852670
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.
    Mali SS; Desai SK; Dalavi DS; Betty CA; Bhosale PN; Patil PS
    Photochem Photobiol Sci; 2011 Oct; 10(10):1652-8. PubMed ID: 21799995
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen induced interface engineering in Fe
    Singh AP; Wang RB; Tossi C; Tittonen I; Wickman B; Hellman A
    RSC Adv; 2021 Jan; 11(8):4297-4307. PubMed ID: 35424412
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synergies of co-doping in ultra-thin hematite photoanodes for solar water oxidation: In and Ti as representative case.
    Singh AP; Tossi C; Tittonen I; Hellman A; Wickman B
    RSC Adv; 2020 Sep; 10(55):33307-33316. PubMed ID: 35515023
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation.
    Wang X; Zhao H; Quan X; Zhao Y; Chen S
    J Hazard Mater; 2009 Jul; 166(1):547-52. PubMed ID: 19131157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrothermal synthesis of CdS nanorods anchored on α-Fe
    Lei R; Ni H; Chen R; Gu H; Zhang B; Zhan W
    J Colloid Interface Sci; 2018 Mar; 514():496-506. PubMed ID: 29289732
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensitive photoelectrochemical sensing of glucose using hematite decorated with NiAl-layered double hydroxides.
    Fan M; Zhu S; Zhang Q; Wang X; Zhang L; Chang Z; Chong R
    Food Chem; 2023 Mar; 405(Pt B):134883. PubMed ID: 36410218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance.
    Li Y; Wei X; Zhu B; Wang H; Tang Y; Sum TC; Chen X
    Nanoscale; 2016 Jun; 8(21):11284-90. PubMed ID: 27189633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving Photoelectrochemical Properties of Anodic WO
    Zych M; Syrek K; Zaraska L; Sulka GD
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32630395
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced photoelectrochemical performance by synthesizing CdS decorated reduced TiO2 nanotube arrays.
    Zhang Q; Wang L; Feng J; Xu H; Yan W
    Phys Chem Chem Phys; 2014 Nov; 16(42):23431-9. PubMed ID: 25265452
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.
    Hamzezadeh-Nakhjavani S; Tavakoli O; Akhlaghi SP; Salehi Z; Esmailnejad-Ahranjani P; Arpanaei A
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18859-73. PubMed ID: 26206125
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ deposition of Ag-Ag2S hybrid nanoparticles onto TiO2 nanotube arrays towards fabrication of photoelectrodes with high visible light photoelectrochemical properties.
    Fan W; Jewell S; She Y; Leung MK
    Phys Chem Chem Phys; 2014 Jan; 16(2):676-80. PubMed ID: 24270769
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photoanodes based on TiO
    Kment S; Riboni F; Pausova S; Wang L; Wang L; Han H; Hubicka Z; Krysa J; Schmuki P; Zboril R
    Chem Soc Rev; 2017 Jun; 46(12):3716-3769. PubMed ID: 28397882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanostructured carbon-doping anodic TiO2 from TiC and its photoelectrochemical properties.
    Cui X; Gu H; Lu J; Shen J; Zhang Z
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3140-5. PubMed ID: 18019140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.