These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 35564850)
1. Coastal Monitoring Using Unmanned Aerial Vehicles (UAVs) for the Management of the Spanish Mediterranean Coast: The Case of Almenara-Sagunto. Chapapría VE; Peris JS; González-Escrivá JA Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564850 [TBL] [Abstract][Full Text] [Related]
2. Low-Cost Sensors for Monitoring Coastal Climate Hazards: A Systematic Review and Meta-Analysis. Ahmed T; Creedon L; Gharbia SS Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772769 [TBL] [Abstract][Full Text] [Related]
3. Combining remote sensing analysis with machine learning to evaluate short-term coastal evolution trend in the shoreline of Venice. Fogarin S; Zanetti M; Dal Barco MK; Zennaro F; Furlan E; Torresan S; Pham HV; Critto A Sci Total Environ; 2023 Feb; 859(Pt 1):160293. PubMed ID: 36403828 [TBL] [Abstract][Full Text] [Related]
4. Unmanned aerial vehicles for surveillance and control of vectors of malaria and other vector-borne diseases. Mechan F; Bartonicek Z; Malone D; Lees RS Malar J; 2023 Jan; 22(1):23. PubMed ID: 36670398 [TBL] [Abstract][Full Text] [Related]
5. Threats from and Countermeasures for Unmanned Aerial and Underwater Vehicles. Khawaja W; Semkin V; Ratyal NI; Yaqoob Q; Gul J; Guvenc I Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632303 [TBL] [Abstract][Full Text] [Related]
6. Unmanned aerial vehicles (UAVs) as a tool for hazard assessment: The 2021 eruption of Cumbre Vieja volcano, La Palma Island (Spain). Román A; Tovar-Sánchez A; Roque-Atienza D; Huertas IE; Caballero I; Fraile-Nuez E; Navarro G Sci Total Environ; 2022 Oct; 843():157092. PubMed ID: 35779732 [TBL] [Abstract][Full Text] [Related]
7. Applications of Uncrewed Aerial Vehicles (UAV) Technology to Support Integrated Coastal Zone Management and the UN Sustainable Development Goals at the Coast. Kandrot S; Hayes S; Holloway P Estuaries Coast; 2022; 45(5):1230-1249. PubMed ID: 34690615 [TBL] [Abstract][Full Text] [Related]
8. Image dataset acquired from an unmanned aerial vehicle over an experimental site within El Soldado estuary in Guaymas, Sonora, México. Encinas-Lara MS; Méndez-Barroso LA; Yépez EA Data Brief; 2020 Jun; 30():105425. PubMed ID: 32280736 [TBL] [Abstract][Full Text] [Related]
10. UAVs for Structure-From-Motion Coastal Monitoring: A Case Study to Assess the Evolution of Embryo Dunes over a Two-Year Time Frame in the Po River Delta, Italy. Taddia Y; Corbau C; Zambello E; Pellegrinelli A Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974850 [TBL] [Abstract][Full Text] [Related]
11. A stability perspective of bioinspired unmanned aerial vehicles performing optimal dynamic soaring. Mir I; Eisa SA; Taha H; Maqsood A; Akhtar S; Islam TU Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34325408 [TBL] [Abstract][Full Text] [Related]
12. Assessing of detached breakwaters and beach nourishment environmental impacts in Italy: a review. Cantasano N; Boccalaro F; Ietto F Environ Monit Assess; 2022 Nov; 195(1):127. PubMed ID: 36401663 [TBL] [Abstract][Full Text] [Related]
13. Path planning optimization in unmanned aerial vehicles using meta-heuristic algorithms: a systematic review. Yahia HS; Mohammed AS Environ Monit Assess; 2022 Oct; 195(1):30. PubMed ID: 36282405 [TBL] [Abstract][Full Text] [Related]
14. A Preliminary Analysis of Anthropogenic and Natural Impacts on a Volcanic Lake Ecosystem in Southern Italy by UAV-Based Monitoring. Mirauda D; Padula MG; Mirauda E; Paternò C; D'Onofrio F; Loguercio D Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612329 [TBL] [Abstract][Full Text] [Related]
15. Shoreline change and potential sea level rise impacts in a climate hazardous location in southeast coast of India. Jayanthi M; Thirumurthy S; Samynathan M; Duraisamy M; Muralidhar M; Ashokkumar J; Vijayan KK Environ Monit Assess; 2017 Dec; 190(1):51. PubMed ID: 29285659 [TBL] [Abstract][Full Text] [Related]
16. Species level mapping of a seagrass bed using an unmanned aerial vehicle and deep learning technique. Tahara S; Sudo K; Yamakita T; Nakaoka M PeerJ; 2022; 10():e14017. PubMed ID: 36275465 [TBL] [Abstract][Full Text] [Related]
17. UAVs-FFDB: A high-resolution dataset for advancing forest fire detection and monitoring using unmanned aerial vehicles (UAVs). Mowla MN; Asadi D; Tekeoglu KN; Masum S; Rabie K Data Brief; 2024 Aug; 55():110706. PubMed ID: 39076831 [TBL] [Abstract][Full Text] [Related]
18. Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles. Specht M; Wiśniewska M; Stateczny A; Specht C; Szostak B; Lewicka O; Stateczny M; Widźgowski S; Halicki A Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270990 [TBL] [Abstract][Full Text] [Related]
19. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations. Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800 [TBL] [Abstract][Full Text] [Related]
20. Using computer vision, image analysis and UAVs for the automatic recognition and counting of common cranes (Grus grus). Chen A; Jacob M; Shoshani G; Charter M J Environ Manage; 2023 Feb; 328():116948. PubMed ID: 36516707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]