These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35565673)

  • 1. Prospects and Pitfalls of Machine Learning in Nutritional Epidemiology.
    Russo S; Bonassi S
    Nutrients; 2022 Apr; 14(9):. PubMed ID: 35565673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspective: Big Data and Machine Learning Could Help Advance Nutritional Epidemiology.
    Morgenstern JD; Rosella LC; Costa AP; de Souza RJ; Anderson LN
    Adv Nutr; 2021 Jun; 12(3):621-631. PubMed ID: 33606879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of machine learning prediction models to explore nutrients predictive of cardiovascular disease using Canadian linked population-based data.
    Morgenstern JD; Rosella LC; Costa AP; Anderson LN
    Appl Physiol Nutr Metab; 2022 May; 47(5):529-546. PubMed ID: 35113677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of Artificial Intelligence, Machine Learning, and Deep Learning in Nutrition: A Systematic Review.
    Theodore Armand TP; Nfor KA; Kim JI; Kim HC
    Nutrients; 2024 Apr; 16(7):. PubMed ID: 38613106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities.
    Jacobs PG; Herrero P; Facchinetti A; Vehi J; Kovatchev B; Breton MD; Cinar A; Nikita KS; Doyle FJ; Bondia J; Battelino T; Castle JR; Zarkogianni K; Narayan R; Mosquera-Lopez C
    IEEE Rev Biomed Eng; 2024; 17():19-41. PubMed ID: 37943654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2002-2012): the ATTICA study.
    Panaretos D; Koloverou E; Dimopoulos AC; Kouli GM; Vamvakari M; Tzavelas G; Pitsavos C; Panagiotakos DB
    Br J Nutr; 2018 Aug; 120(3):326-334. PubMed ID: 29789037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applicability of machine learning techniques in food intake assessment: A systematic review.
    Oliveira Chaves L; Gomes Domingos AL; Louzada Fernandes D; Ribeiro Cerqueira F; Siqueira-Batista R; Bressan J
    Crit Rev Food Sci Nutr; 2023; 63(7):902-919. PubMed ID: 34323627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards personalized nutritional treatment for malnutrition using machine learning-based screening tools.
    Raphaeli O; Singer P
    Clin Nutr; 2021 Oct; 40(10):5249-5251. PubMed ID: 34534893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutritional epidemiology: New perspectives for understanding the diet-disease relationship?
    Boeing H
    Eur J Clin Nutr; 2013 May; 67(5):424-9. PubMed ID: 23443832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current state and prospects of artificial intelligence in allergy.
    van Breugel M; Fehrmann RSN; Bügel M; Rezwan FI; Holloway JW; Nawijn MC; Fontanella S; Custovic A; Koppelman GH
    Allergy; 2023 Oct; 78(10):2623-2643. PubMed ID: 37584170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Clinician's Guide to Artificial Intelligence: How to Critically Appraise Machine Learning Studies.
    Faes L; Liu X; Wagner SK; Fu DJ; Balaskas K; Sim DA; Bachmann LM; Keane PA; Denniston AK
    Transl Vis Sci Technol; 2020 Feb; 9(2):7. PubMed ID: 32704413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning, artificial intelligence and the prediction of dementia.
    Merkin A; Krishnamurthi R; Medvedev ON
    Curr Opin Psychiatry; 2022 Mar; 35(2):123-129. PubMed ID: 34861656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Causal Artificial Intelligence Models of Food Quality Data.
    Kurtanjek Ž
    Food Technol Biotechnol; 2024 Mar; 62(1):102-109. PubMed ID: 38601958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to read and review papers on machine learning and artificial intelligence in radiology: a survival guide to key methodological concepts.
    Kocak B; Kus EA; Kilickesmez O
    Eur Radiol; 2021 Apr; 31(4):1819-1830. PubMed ID: 33006018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence in Cardiology.
    Johnson KW; Torres Soto J; Glicksberg BS; Shameer K; Miotto R; Ali M; Ashley E; Dudley JT
    J Am Coll Cardiol; 2018 Jun; 71(23):2668-2679. PubMed ID: 29880128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic lupus in the era of machine learning medicine.
    Zhan K; Buhler KA; Chen IY; Fritzler MJ; Choi MY
    Lupus Sci Med; 2024 Mar; 11(1):. PubMed ID: 38443092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomarkers in nutritional epidemiology: applications, needs and new horizons.
    Jenab M; Slimani N; Bictash M; Ferrari P; Bingham SA
    Hum Genet; 2009 Jun; 125(5-6):507-25. PubMed ID: 19357868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial intelligence in spine care: current applications and future utility.
    Hornung AL; Hornung CM; Mallow GM; Barajas JN; Rush A; Sayari AJ; Galbusera F; Wilke HJ; Colman M; Phillips FM; An HS; Samartzis D
    Eur Spine J; 2022 Aug; 31(8):2057-2081. PubMed ID: 35347425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.
    Zhang C; Xu J; Tang R; Yang J; Wang W; Yu X; Shi S
    J Hematol Oncol; 2023 Nov; 16(1):114. PubMed ID: 38012673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic review of data mining and machine learning for air pollution epidemiology.
    Bellinger C; Mohomed Jabbar MS; Zaïane O; Osornio-Vargas A
    BMC Public Health; 2017 Nov; 17(1):907. PubMed ID: 29179711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.