These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 35565690)
1. Exploring the Role of Metabolites in Cancer and the Associated Nerve Crosstalk. Gu I; Gregory E; Atwood C; Lee SO; Song YH Nutrients; 2022 Apr; 14(9):. PubMed ID: 35565690 [TBL] [Abstract][Full Text] [Related]
2. Metabolic Alterations in Cancer and Their Potential as Therapeutic Targets. Weyandt JD; Thompson CB; Giaccia AJ; Rathmell WK Am Soc Clin Oncol Educ Book; 2017; 37():825-832. PubMed ID: 28561705 [TBL] [Abstract][Full Text] [Related]
3. The biology and engineered modeling strategies of cancer-nerve crosstalk. Gregory E; Dugan R; David G; Song YH Biochim Biophys Acta Rev Cancer; 2020 Dec; 1874(2):188406. PubMed ID: 32827578 [TBL] [Abstract][Full Text] [Related]
4. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. DeBerardinis RJ; Cheng T Oncogene; 2010 Jan; 29(3):313-24. PubMed ID: 19881548 [TBL] [Abstract][Full Text] [Related]
6. Nerve-tumor crosstalk in tumor microenvironment: From tumor initiation and progression to clinical implications. Zhang Z; Lv ZG; Lu M; Li H; Zhou J Biochim Biophys Acta Rev Cancer; 2024 Jul; 1879(4):189121. PubMed ID: 38796026 [TBL] [Abstract][Full Text] [Related]
7. Amino acids in cancer. Lieu EL; Nguyen T; Rhyne S; Kim J Exp Mol Med; 2020 Jan; 52(1):15-30. PubMed ID: 31980738 [TBL] [Abstract][Full Text] [Related]
8. Therapeutic targeting of cancer cell metabolism. Dang CV; Hamaker M; Sun P; Le A; Gao P J Mol Med (Berl); 2011 Mar; 89(3):205-12. PubMed ID: 21301795 [TBL] [Abstract][Full Text] [Related]
9. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression. Xu X; Li J; Sun X; Guo Y; Chu D; Wei L; Li X; Yang G; Liu X; Yao L; Zhang J; Shen L Oncotarget; 2015 Sep; 6(28):26161-76. PubMed ID: 26317652 [TBL] [Abstract][Full Text] [Related]
10. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Lu J; Tan M; Cai Q Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809 [TBL] [Abstract][Full Text] [Related]
11. Inborn and acquired metabolic defects in cancer. Frezza C; Pollard PJ; Gottlieb E J Mol Med (Berl); 2011 Mar; 89(3):213-20. PubMed ID: 21301796 [TBL] [Abstract][Full Text] [Related]
12. Energy transfer in "parasitic" cancer metabolism: mitochondria are the powerhouse and Achilles' heel of tumor cells. Martinez-Outschoorn UE; Pestell RG; Howell A; Tykocinski ML; Nagajyothi F; Machado FS; Tanowitz HB; Sotgia F; Lisanti MP Cell Cycle; 2011 Dec; 10(24):4208-16. PubMed ID: 22033146 [TBL] [Abstract][Full Text] [Related]
13. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect. Damiani C; Colombo R; Gaglio D; Mastroianni F; Pescini D; Westerhoff HV; Mauri G; Vanoni M; Alberghina L PLoS Comput Biol; 2017 Sep; 13(9):e1005758. PubMed ID: 28957320 [TBL] [Abstract][Full Text] [Related]
14. Myristica fragrans Suppresses Tumor Growth and Metabolism by Inhibiting Lactate Dehydrogenase A. Kim EY; Choi HJ; Park MJ; Jung YS; Lee SO; Kim KJ; Choi JH; Chung TW; Ha KT Am J Chin Med; 2016; 44(5):1063-79. PubMed ID: 27430914 [TBL] [Abstract][Full Text] [Related]
15. The Role of Extracellular Vesicles in Cancer-Nerve Crosstalk of the Peripheral Nervous System. Guo Y; Gil Z Cells; 2022 Apr; 11(8):. PubMed ID: 35455973 [TBL] [Abstract][Full Text] [Related]
16. Otto Warburg's contributions to current concepts of cancer metabolism. Koppenol WH; Bounds PL; Dang CV Nat Rev Cancer; 2011 May; 11(5):325-37. PubMed ID: 21508971 [TBL] [Abstract][Full Text] [Related]
17. Glucose avidity of carcinomas. Ortega AD; Sánchez-Aragó M; Giner-Sánchez D; Sánchez-Cenizo L; Willers I; Cuezva JM Cancer Lett; 2009 Apr; 276(2):125-35. PubMed ID: 18790562 [TBL] [Abstract][Full Text] [Related]
18. Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. Corbet C; Feron O Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):7-15. PubMed ID: 28110019 [TBL] [Abstract][Full Text] [Related]
19. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy. Wang G; Wang JJ; Yin PH; Xu K; Wang YZ; Shi F; Gao J; Fu XL J Cell Physiol; 2018 Jan; 234(1):348-368. PubMed ID: 30069931 [TBL] [Abstract][Full Text] [Related]
20. Targeting LIN28B reprograms tumor glucose metabolism and acidic microenvironment to suppress cancer stemness and metastasis. Chen C; Bai L; Cao F; Wang S; He H; Song M; Chen H; Liu Y; Guo J; Si Q; Pan Y; Zhu R; Chuang TH; Xiang R; Luo Y Oncogene; 2019 Jun; 38(23):4527-4539. PubMed ID: 30742065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]