These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 3556577)
21. Lysyl-tRNA synthetase from Myxococcus xanthus catalyzes the formation of diadenosine penta- and hexaphosphates from adenosine tetraphosphate. Oka M; Takegawa K; Kimura Y Arch Biochem Biophys; 2016 Aug; 604():152-8. PubMed ID: 27392456 [TBL] [Abstract][Full Text] [Related]
22. Biochemistry of terminal deoxynucleotidyltransferase. Identification and unity of ribo- and deoxyribonucleoside triphosphate binding site in terminal deoxynucleotidyltransferase. Pandey VN; Modak MJ J Biol Chem; 1989 Jan; 264(2):867-71. PubMed ID: 2910867 [TBL] [Abstract][Full Text] [Related]
23. Diadenosine polyphosphate-activated inward and outward currents in follicular oocytes of Xenopus laevis. Pintor J; King BF; Ziganshin AU; Miras-Portugal MT; Burnstock G Life Sci; 1996; 59(12):PL179-84. PubMed ID: 8809216 [TBL] [Abstract][Full Text] [Related]
24. Biochemistry of terminal deoxynucleotidyl transferase. Conditions for and characterization of ultraviolet light mediated substrate cross-linking to terminal deoxynucleotidyl transferase. Modak MJ; Gillerman-Cox E J Biol Chem; 1982 Dec; 257(24):15105-9. PubMed ID: 7174687 [TBL] [Abstract][Full Text] [Related]
25. Adenine dinucleotides: a novel class of signalling molecules. Ogilvie A; Bläsius R; Schulze-Lohoff E; Sterzel RB J Auton Pharmacol; 1996 Dec; 16(6):325-8. PubMed ID: 9131408 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase. Sillero MA; Guranowski A; Sillero A Eur J Biochem; 1991 Dec; 202(2):507-13. PubMed ID: 1761051 [TBL] [Abstract][Full Text] [Related]
27. Diadenosine polyphosphate-stimulated gluconeogenesis in isolated rat proximal tubules. Edgecombe M; Craddock HS; Smith DC; McLennan AG; Fisher MJ Biochem J; 1997 Apr; 323 ( Pt 2)(Pt 2):451-6. PubMed ID: 9163337 [TBL] [Abstract][Full Text] [Related]
28. Regulation of rat mesangial cell growth by diadenosine phosphates. Heidenreich S; Tepel M; Schlüter H; Harrach B; Zidek W J Clin Invest; 1995 Jun; 95(6):2862-7. PubMed ID: 7769127 [TBL] [Abstract][Full Text] [Related]
29. Differential effects of diadenosine phosphates on purinoceptors in the rat isolated perfused kidney. van der Giet M; Khattab M; Börgel J; Schlüter H; Zidek W Br J Pharmacol; 1997 Apr; 120(8):1453-60. PubMed ID: 9113365 [TBL] [Abstract][Full Text] [Related]
30. Biochemistry of terminal deoxynucleotidyltransferase: mechanism of inhibition by adenosine 5'-triphosphate. Modak MJ Biochemistry; 1978 Jul; 17(15):3116-20. PubMed ID: 698189 [TBL] [Abstract][Full Text] [Related]
31. Vasoactivity of diadenosine polyphosphates in human small renal resistance arteries. Steinmetz M; Gabriëls G; Le TV; Piechota HJ; Rahn KH; Schlatter E Nephrol Dial Transplant; 2003 Dec; 18(12):2496-504. PubMed ID: 14605271 [TBL] [Abstract][Full Text] [Related]
32. Dinucleoside polyphosphates stimulate the primer independent synthesis of poly(A) catalyzed by yeast poly(A) polymerase. Sillero MA; De Diego A; Osorio H; Sillero A Eur J Biochem; 2002 Nov; 269(21):5323-9. PubMed ID: 12392566 [TBL] [Abstract][Full Text] [Related]
33. Diadenosine polyphosphates in insulin-secreting cells: interaction with specific receptors and degradation. Verspohl EJ; Johannwille B Diabetes; 1998 Nov; 47(11):1727-34. PubMed ID: 9792542 [TBL] [Abstract][Full Text] [Related]
34. Biochemistry of terminal deoxynucleotidyltransferase. Affinity labeling and identification of the deoxynucleoside triphosphate binding domain of terminal deoxynucleotidyltransferase. Pandey V; Modak MJ J Biol Chem; 1988 Mar; 263(8):3744-51. PubMed ID: 3346221 [TBL] [Abstract][Full Text] [Related]
35. Diadenosine polyphosphates induce intracellular Ca2+ mobilization in human neutrophils via a pertussis toxin sensitive G-protein. Gasmi L; McLennan AG; Edwards SW Immunology; 1997 Jan; 90(1):154-9. PubMed ID: 9038726 [TBL] [Abstract][Full Text] [Related]
36. Effects of diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) on platelet aggregation in unfractionated human blood. Lüthje J; Baringer J; Ogilvie A Blut; 1985 Dec; 51(6):405-13. PubMed ID: 3852686 [TBL] [Abstract][Full Text] [Related]
37. Diadenosine polyphosphates cause contraction and relaxation in isolated rat resistance arteries. Steinmetz M; Schlatter E; Boudier HA; Rahn KH; De Mey JG J Pharmacol Exp Ther; 2000 Sep; 294(3):1175-81. PubMed ID: 10945874 [TBL] [Abstract][Full Text] [Related]
38. Neutrophil apoptosis is delayed by the diadenosine polyphosphates, Ap5A and Ap6A: synergism with granulocyte-macrophage colony-stimulating factor. Gasmi L; McLennan AG; Edwards SW Br J Haematol; 1996 Dec; 95(4):637-9. PubMed ID: 8982038 [TBL] [Abstract][Full Text] [Related]
39. Evidence for two different P2X-receptors mediating vasoconstriction of Ap5A and Ap6A in the isolated perfused rat kidney. van der Giet M; Cinkilic O; Jankowski J; Tepel M; Zidek W; Schlüter H Br J Pharmacol; 1999 Jul; 127(6):1463-9. PubMed ID: 10455297 [TBL] [Abstract][Full Text] [Related]
40. A novel assay for determination of diadenosine polyphosphates in human platelets: studies in normotensive subjects and in patients with essential hypertension. Hollah P; Hausberg M; Kosch M; Barenbrock M; Letzel M; Schlatter E; Rahn KH J Hypertens; 2001 Feb; 19(2):237-45. PubMed ID: 11212966 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]