These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35566165)

  • 1. Catalytic and Stoichiometric
    Lakk-Bogáth D; Szávuly MI; Török P; Kaizer J
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dioxygen activation and catalytic aerobic oxidation by a mononuclear nonheme iron(II) complex.
    Kim SO; Sastri CV; Seo MS; Kim J; Nam W
    J Am Chem Soc; 2005 Mar; 127(12):4178-9. PubMed ID: 15783193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Redox Potential on Diiron-Mediated Disproportionation of Hydrogen Peroxide.
    Török P; Lakk-Bogáth D; Kaizer J
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional models of nonheme diiron enzymes: reactivity of the μ-oxo-μ-1,2-peroxo-diiron(iii) intermediate in electrophilic and nucleophilic reactions.
    Kripli B; Szávuly M; Csendes FV; Kaizer J
    Dalton Trans; 2020 Feb; 49(6):1742-1746. PubMed ID: 31967142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of monodentate heterocycle co-ligands on the μ-1,2-peroxo-diiron(III) mediated aldehyde deformylation reactions.
    Török P; Lakk-Bogáth D; Unjaroen D; Browne WR; Kaizer J
    J Inorg Biochem; 2024 Sep; 258():112620. PubMed ID: 38824901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disproportionation of H
    Lakk-Bogáth D; Török P; Csendes FV; Keszei S; Gantner B; Kaizer J
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional models of nonheme diiron enzymes: kinetic and computational evidence for the formation of oxoiron(iv) species from peroxo-diiron(iii) complexes, and their reactivity towards phenols and H2O2.
    Szávuly MI; Surducan M; Nagy E; Surányi M; Speier G; Silaghi-Dumitrescu R; Kaizer J
    Dalton Trans; 2016 Oct; 45(37):14709-18. PubMed ID: 27283752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometric Aldehyde Deformylation Mediated by Nucleophilic Peroxo-diiron(III) Complex as a Functional Model of Aldehyde Deformylating Oxygenase.
    Kripli B; Csendes FV; Török P; Speier G; Kaizer J
    Chemistry; 2019 Nov; 25(63):14290-14294. PubMed ID: 31448834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes.
    Jasniewski AJ; Que L
    Chem Rev; 2018 Mar; 118(5):2554-2592. PubMed ID: 29400961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies on the formation and reactivity of dioxygen adducts of diiron complexes supported by sterically hindered carboxylates.
    Kryatov SV; Chavez FA; Reynolds AM; Rybak-Akimova EV; Que L; Tolman WB
    Inorg Chem; 2004 Mar; 43(6):2141-50. PubMed ID: 15018538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates.
    Gordon JB; Vilbert AC; DiMucci IM; MacMillan SN; Lancaster KM; Moënne-Loccoz P; Goldberg DP
    J Am Chem Soc; 2019 Nov; 141(44):17533-17547. PubMed ID: 31647656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ferritin Fe2 site at the diiron catalytic center controls the reaction with O2 in the rapid mineralization pathway.
    Tosha T; Hasan MR; Theil EC
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18182-7. PubMed ID: 19011101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and computational studies of (mu-oxo)(mu-1,2-peroxo)diiron(III) complexes of relevance to nonheme diiron oxygenase intermediates.
    Fiedler AT; Shan X; Mehn MP; Kaizer J; Torelli S; Frisch JR; Kodera M; Que L
    J Phys Chem A; 2008 Dec; 112(50):13037-44. PubMed ID: 18811130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonheme iron(II) complexes of macrocyclic ligands in the generation of oxoiron(IV) complexes and the catalytic epoxidation of olefins.
    Suh Y; Seo MS; Kim KM; Kim YS; Jang HG; Tosha T; Kitagawa T; Kim J; Nam W
    J Inorg Biochem; 2006 Apr; 100(4):627-33. PubMed ID: 16458358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of a μ-1,2-hydroperoxo Fe
    Walleck S; Zimmermann TP; Hachmeister H; Pilger C; Huser T; Katz S; Hildebrandt P; Stammler A; Bögge H; Bill E; Glaser T
    Nat Commun; 2022 Mar; 13(1):1376. PubMed ID: 35296656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sc
    Banerjee S; Draksharapu A; Crossland PM; Fan R; Guo Y; Swart M; Que L
    J Am Chem Soc; 2020 Mar; 142(9):4285-4297. PubMed ID: 32017545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stoichiometric Alkane and Aldehyde Hydroxylation Reactions Mediated by In Situ Generated Iron(III)-Iodosylbenzene Adduct.
    Török P; Lakk-Bogáth D; Kaizer J
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the syn disposition of nitrogen donors in non-heme diiron enzymes. Synthesis, characterization, and hydrogen peroxide reactivity of diiron(III) complexes with the syn N-donor ligand H2BPG2DEV.
    Friedle S; Kodanko JJ; Morys AJ; Hayashi T; Moënne-Loccoz P; Lippard SJ
    J Am Chem Soc; 2009 Oct; 131(40):14508-20. PubMed ID: 19757795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.