These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35566165)
21. Effect of Substituted Pyridine Co-Ligands and (Diacetoxyiodo)benzene Oxidants on the Fe(III)-OIPh-Mediated Triphenylmethane Hydroxylation Reaction. Török P; Kaizer J Molecules; 2024 Aug; 29(16):. PubMed ID: 39202921 [TBL] [Abstract][Full Text] [Related]
22. Dioxygen activation at non-heme iron: insights from rapid kinetic studies. Korendovych IV; Kryatov SV; Rybak-Akimova EV Acc Chem Res; 2007 Jul; 40(7):510-21. PubMed ID: 17521158 [TBL] [Abstract][Full Text] [Related]
23. Nonheme Diiron Oxygenase Mimic That Generates a Diferric-Peroxo Intermediate Capable of Catalytic Olefin Epoxidation and Alkane Hydroxylation Including Cyclohexane. Oloo WN; Szávuly M; Kaizer J; Que L Inorg Chem; 2022 Jan; 61(1):37-41. PubMed ID: 34894683 [TBL] [Abstract][Full Text] [Related]
24. Functional mimic of dioxygen-activating centers in non-heme diiron enzymes: mechanistic implications of paramagnetic intermediates in the reactions between diiron(II) complexes and dioxygen. Lee D; Pierce B; Krebs C; Hendrich MP; Huynh BH; Lippard SJ J Am Chem Soc; 2002 Apr; 124(15):3993-4007. PubMed ID: 11942838 [TBL] [Abstract][Full Text] [Related]
25. Mechanistic insight into peroxo-shunt formation of biomimetic models for compound II, their reactivity toward organic substrates, and the influence of N-methylimidazole axial ligation. Oszajca M; Drzewiecka-Matuszek A; Franke A; Rutkowska-Zbik D; Brindell M; Witko M; Stochel G; van Eldik R Chemistry; 2014 Feb; 20(8):2328-43. PubMed ID: 24443188 [TBL] [Abstract][Full Text] [Related]
26. Water affects the stereochemistry and dioxygen reactivity of carboxylate-rich diiron(II) models for the diiron centers in dioxygen-dependent non-heme enzymes. Yoon S; Lippard SJ J Am Chem Soc; 2005 Jun; 127(23):8386-97. PubMed ID: 15941272 [TBL] [Abstract][Full Text] [Related]
27. Factors affecting the carboxylate shift upon formation of nonheme diiron-O2 adducts. Frisch JR; McDonnell R; Rybak-Akimova EV; Que L Inorg Chem; 2013 Mar; 52(5):2627-36. PubMed ID: 23432330 [TBL] [Abstract][Full Text] [Related]
28. Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions. Wang B; Lee YM; Clémancey M; Seo MS; Sarangi R; Latour JM; Nam W J Am Chem Soc; 2016 Feb; 138(7):2426-36. PubMed ID: 26816269 [TBL] [Abstract][Full Text] [Related]
30. Structure and reactivity of a mononuclear non-haem iron(III)-peroxo complex. Cho J; Jeon S; Wilson SA; Liu LV; Kang EA; Braymer JJ; Lim MH; Hedman B; Hodgson KO; Valentine JS; Solomon EI; Nam W Nature; 2011 Oct; 478(7370):502-5. PubMed ID: 22031443 [TBL] [Abstract][Full Text] [Related]
31. Use of a chemical trigger for electron transfer to characterize a precursor to cluster X in assembly of the iron-radical cofactor of Escherichia coli ribonucleotide reductase. Saleh L; Krebs C; Ley BA; Naik S; Huynh BH; Bollinger JM Biochemistry; 2004 May; 43(20):5953-64. PubMed ID: 15147179 [TBL] [Abstract][Full Text] [Related]
32. Dioxygen binding to complexes with Fe(II)2(mu-OH)2 cores: steric control of activation barriers and O2-adduct formation. Kryatov SV; Taktak S; Korendovych IV; Rybak-Akimova EV; Kaizer J; Torelli S; Shan X; Mandal S; MacMurdo VL; Mairata i Payeras A; Que L Inorg Chem; 2005 Jan; 44(1):85-99. PubMed ID: 15627364 [TBL] [Abstract][Full Text] [Related]
33. A mechanistic study of the reaction between a diiron(II) complex [FeII(2)(mu-OH)2(6-Me3-TPA)2](2+) and O2 to form a diiron(III) peroxo complex. Kryatov SV; Rybak-Akimova EV; MacMurdo VL; Que L Inorg Chem; 2001 May; 40(10):2220-8. PubMed ID: 11327894 [TBL] [Abstract][Full Text] [Related]
34. (Mu-1,2-peroxo)diiron(III/III) complex as a precursor to the diiron(III/IV) intermediate X in the assembly of the iron-radical cofactor of ribonucleotide reductase from mouse. Yun D; García-Serres R; Chicalese BM; An YH; Huynh BH; Bollinger JM Biochemistry; 2007 Feb; 46(7):1925-32. PubMed ID: 17256972 [TBL] [Abstract][Full Text] [Related]
35. Synthesis, characterization and catalytic activity of a mononuclear nonheme copper(II)-iodosylbenzene adduct. Jeon H; Oh H; Hong S J Inorg Biochem; 2021 Oct; 223():111524. PubMed ID: 34218127 [TBL] [Abstract][Full Text] [Related]
36. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. Roelfes G; Vrajmasu V; Chen K; Ho RY; Rohde JU; Zondervan C; La Crois RM; Schudde EP; Lutz M; Spek AL; Hage R; Feringa BL; Münck E; Que L Inorg Chem; 2003 Apr; 42(8):2639-53. PubMed ID: 12691572 [TBL] [Abstract][Full Text] [Related]
37. Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Engelmann X; Malik DD; Corona T; Warm K; Farquhar ER; Swart M; Nam W; Ray K Angew Chem Int Ed Engl; 2019 Mar; 58(12):4012-4016. PubMed ID: 30663826 [TBL] [Abstract][Full Text] [Related]
38. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant. Jensen MP; Lange SJ; Mehn MP; Que EL; Que L J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539 [TBL] [Abstract][Full Text] [Related]
39. Role of carboxylate bridges in modulating nonheme diiron(II)/O(2) reactivity. Costas M; Cady CW; Kryatov SV; Ray M; Ryan MJ; Rybak-Akimova EV; Que L Inorg Chem; 2003 Nov; 42(23):7519-30. PubMed ID: 14606847 [TBL] [Abstract][Full Text] [Related]
40. Oxygen activation at mononuclear nonheme iron centers: a superoxo perspective. Mukherjee A; Cranswick MA; Chakrabarti M; Paine TK; Fujisawa K; Münck E; Que L Inorg Chem; 2010 Apr; 49(8):3618-28. PubMed ID: 20380464 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]