These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35566272)

  • 1. From Iron to Copper: The Effect of Transition Metal Catalysts on the Hydrogen Storage Properties of Nanoconfined LiBH
    Martínez AA; Gasnier A; Gennari FC
    Molecules; 2022 May; 27(9):. PubMed ID: 35566272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Nickel and Cobalt Ferrite-Doped Graphene as Efficient Catalysts for Improving the Hydrogen Storage Kinetics of Lithium Borohydride.
    Palade P; Comanescu C; Radu C
    Materials (Basel); 2023 Jan; 16(1):. PubMed ID: 36614768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Ni in increasing the reversibility of the hydrogen release from nanoconfined LiBH4.
    Ngene P; Verkuijlen MH; Zheng Q; Kragten J; van Bentum PJ; Bitter JH; de Jongh PE
    Faraday Discuss; 2011; 151():47-58; discussion 95-115. PubMed ID: 22455062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible hydrogen desorption from LiBH4 catalyzed by graphene supported Pt nanoparticles.
    Xu J; Qi Z; Cao J; Meng R; Gu X; Wang W; Chen Z
    Dalton Trans; 2013 Sep; 42(36):12926-33. PubMed ID: 23719649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Hydrogen Storage Properties and Reversibility of LiBH
    Zang L; Sun W; Liu S; Huang Y; Yuan H; Tao Z; Wang Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19598-19604. PubMed ID: 29786421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ X-ray Raman spectroscopy study of the hydrogen sorption properties of lithium borohydride nanocomposites.
    Miedema PS; Ngene P; van der Eerden AM; Sokaras D; Weng TC; Nordlund D; Au YS; de Groot FM
    Phys Chem Chem Phys; 2014 Nov; 16(41):22651-8. PubMed ID: 25231357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Dehydrogenation Properties of LiBH
    Zang L; Zhang Q; Li L; Huang Y; Chang X; Jiao L; Yuan H; Wang Y
    Chem Asian J; 2018 Jan; 13(1):99-105. PubMed ID: 29144606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe
    Xu G; Zhang W; Zhang Y; Zhao X; Wen P; Ma D
    RSC Adv; 2018 May; 8(35):19353-19361. PubMed ID: 35541019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Low-Temperature Hydrogen Storage in Nanoporous Ni-Based Alloy Supported LiBH
    Chen X; Li Z; Zhang Y; Liu D; Wang C; Li Y; Si T; Zhang Q
    Front Chem; 2020; 8():283. PubMed ID: 32351941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning LiBH
    Puszkiel J; Gasnier A; Amica G; Gennari F
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31906111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-loading LiBH
    Guo Y; Liu Y; Feng L; An C; Wang Y
    Chem Asian J; 2023 Apr; 18(7):e202300009. PubMed ID: 36811292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-walled carbon nanotubes/lithium borohydride composites for hydrogen storage: role of
    Vellingiri L; Annamalai K; Kandasamy R; Kombiah I
    RSC Adv; 2019 Oct; 9(54):31483-31496. PubMed ID: 35527925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Stoichiometry on the H
    Wang H; Cao H; Pistidda C; Garroni S; Wu G; Klassen T; Dorheim M; Chen P
    Chem Asian J; 2017 Jul; 12(14):1758-1764. PubMed ID: 28421668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Nanoconfined LiBH
    Suwarno S; Nale A; Suwarta P; Wijayanti ID; Ismail M
    Front Chem; 2022; 10():866959. PubMed ID: 35464216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced hydrogen storage kinetics and air stability of nanoconfined NaAlH
    Do HW; Kim H; Cho ES
    RSC Adv; 2021 Oct; 11(52):32533-32540. PubMed ID: 35493568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved hydrogen storage kinetics of nanoconfined NaAlH₄ catalyzed with TiCl₃ nanoparticles.
    Nielsen TK; Polanski M; Zasada D; Javadian P; Besenbacher F; Bystrzycki J; Skibsted J; Jensen TR
    ACS Nano; 2011 May; 5(5):4056-64. PubMed ID: 21446760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nickel-Platinum Nanoparticles Supported on Zeolitic Imidazolate Framework/Graphene Oxide as High-Performance Adsorbents for Ambient-Temperature Hydrogen Storage.
    Zhang J; Ji D; Zhou H; Yan X; Yuan A
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1400-406. PubMed ID: 29687973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen storage studies of palladium decorated nitrogen doped graphene nanoplatelets.
    Vinayan BP; Sethupathi K; Ramaprabhu S
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6608-14. PubMed ID: 22962796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen adsorption on Pd- and Ru-doped C60 fullerene at an ambient temperature.
    Saha D; Deng S
    Langmuir; 2011 Jun; 27(11):6780-6. PubMed ID: 21526804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a mesoporous NiCo
    Kaliyaperumal A; Periyasamy G; Kombiah I; Annamalai K
    RSC Adv; 2024 Jun; 14(29):20867-20878. PubMed ID: 38957580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.