BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35566391)

  • 1. Accelerating AutoDock Vina with GPUs.
    Tang S; Chen R; Lin M; Lin Q; Zhu Y; Ding J; Hu H; Ling M; Wu J
    Molecules; 2022 May; 27(9):. PubMed ID: 35566391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vina-GPU 2.0: Further Accelerating AutoDock Vina and Its Derivatives with Graphics Processing Units.
    Ding J; Tang S; Mei Z; Wang L; Huang Q; Hu H; Ling M; Wu J
    J Chem Inf Model; 2023 Apr; 63(7):1982-1998. PubMed ID: 36941232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark.
    Gaillard T
    J Chem Inf Model; 2018 Aug; 58(8):1697-1706. PubMed ID: 29989806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening.
    Yu Y; Cai C; Wang J; Bo Z; Zhu Z; Zheng H
    J Chem Theory Comput; 2023 Jun; 19(11):3336-3345. PubMed ID: 37125970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DockingApp RF: A State-of-the-Art Novel Scoring Function for Molecular Docking in a User-Friendly Interface to AutoDock Vina.
    Macari G; Toti D; Pasquadibisceglie A; Polticelli F
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness Analysis of Multiple Initial States Simulated Annealing Algorithm, a Case Study on the Molecular Docking Tool AutoDock Vina.
    Zhou X; Ling M; Lin Q; Tang S; Wu J; Hu H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3830-3841. PubMed ID: 37831573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina.
    Di Muzio E; Toti D; Polticelli F
    J Comput Aided Mol Des; 2017 Feb; 31(2):213-218. PubMed ID: 28063067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.
    Santos-Martins D; Solis-Vasquez L; Tillack AF; Sanner MF; Koch A; Forli S
    J Chem Theory Comput; 2021 Feb; 17(2):1060-1073. PubMed ID: 33403848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.
    Handoko SD; Ouyang X; Su CT; Kwoh CK; Ong YS
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1266-72. PubMed ID: 22641710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening.
    Tai HK; Jusoh SA; Siu SWI
    J Cheminform; 2018 Dec; 10(1):62. PubMed ID: 30552524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening.
    Quiroga R; Villarreal MA
    PLoS One; 2016; 11(5):e0155183. PubMed ID: 27171006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ringtail: A Python Tool for Efficient Management and Storage of Virtual Screening Results.
    Hansel-Harris AT; Santos-Martins D; Bruciaferri N; Tillack AF; Holcomb M; Forli S
    J Chem Inf Model; 2023 Apr; 63(7):1858-1864. PubMed ID: 36976961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting of Receptor Flexibility in Ultra-Large Virtual Screens with VirtualFlow Using a Grey Wolf Optimization Method.
    Gorgulla C; Fackeldey K; Wagner G; Arthanari H
    Supercomput Front Innov; 2020 Nov; 7(3):4-12. PubMed ID: 34693068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings.
    Eberhardt J; Santos-Martins D; Tillack AF; Forli S
    J Chem Inf Model; 2021 Aug; 61(8):3891-3898. PubMed ID: 34278794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1001 Ways to run AutoDock Vina for virtual screening.
    Jaghoori MM; Bleijlevens B; Olabarriaga SD
    J Comput Aided Mol Des; 2016 Mar; 30(3):237-49. PubMed ID: 26897747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
    Ng MC; Fong S; Siu SW
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541007. PubMed ID: 25800162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Drug Discovery of HCV Helicase Inhibitor: Improved Docking Accuracy with Multiple Seeding in AutoDock Vina and In Situ Minimization.
    Lim SK; Othman R; Yusof R; Heh CH
    Curr Comput Aided Drug Des; 2017; 13(2):160-169. PubMed ID: 27903217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMIDE v2: High-Throughput Screening Based on AutoDock-GPU and Improved Workflow Leading to Better Performance and Reliability.
    Darme P; Dauchez M; Renard A; Voutquenne-Nazabadioko L; Aubert D; Escotte-Binet S; Renault JH; Villena I; Steffenel LA; Baud S
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking.
    Wong KM; Tai HK; Siu SWI
    Chem Biol Drug Des; 2021 Jan; 97(1):97-110. PubMed ID: 32679606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.
    Trott O; Olson AJ
    J Comput Chem; 2010 Jan; 31(2):455-61. PubMed ID: 19499576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.