These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35566478)

  • 1. Handheld Fundus Camera for Diabetic Retinopathy Screening: A Comparison Study with Table-Top Fundus Camera in Real-Life Setting.
    Midena E; Zennaro L; Lapo C; Torresin T; Midena G; Pilotto E; Frizziero L
    J Clin Med; 2022 Apr; 11(9):. PubMed ID: 35566478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of 50° handheld fundus camera versus ultra-widefield table-top fundus camera for diabetic retinopathy detection and grading.
    Midena E; Zennaro L; Lapo C; Torresin T; Midena G; Frizziero L
    Eye (Lond); 2023 Oct; 37(14):2994-2999. PubMed ID: 36854818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera.
    Kubin AM; Huhtinen P; Ohtonen P; Keskitalo A; Wirkkala J; Hautala N
    Ann Med; 2024 Dec; 56(1):2352018. PubMed ID: 38738798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new handheld fundus camera combined with visual artificial intelligence facilitates diabetic retinopathy screening.
    Ruan S; Liu Y; Hu WT; Jia HX; Wang SS; Song ML; Shen MX; Luo DW; Ye T; Wang FH
    Int J Ophthalmol; 2022; 15(4):620-627. PubMed ID: 35450182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Handheld fundus camera performance, image quality and outcomes of diabetic retinopathy grading in a pilot screening study.
    Kubin AM; Wirkkala J; Keskitalo A; Ohtonen P; Hautala N
    Acta Ophthalmol; 2021 Dec; 99(8):e1415-e1420. PubMed ID: 33724706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting.
    Lupidi M; Danieli L; Fruttini D; Nicolai M; Lassandro N; Chhablani J; Mariotti C
    Acta Diabetol; 2023 Aug; 60(8):1083-1088. PubMed ID: 37154944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of handheld fundus camera with mydriasis for retinal imaging of diabetic retinopathy screening in China: a prospective comparison study.
    Xiao B; Liao Q; Li Y; Weng F; Jin L; Wang Y; Huang W; Yi J; Burton MJ; Yip JL
    BMJ Open; 2020 Oct; 10(10):e040196. PubMed ID: 33122324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetic Retinopathy Screening in Patients with Diabetes Using a Handheld Fundus Camera: The Experience from the South-Eastern Region in Hungary.
    Eszes DJ; Szabó DJ; Russell G; Lengyel C; Várkonyi T; Paulik E; Nagymajtényi L; Facskó A; Petrovski G; Petrovski BÉ
    J Diabetes Res; 2021; 2021():6646645. PubMed ID: 33628836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Handheld Retinal Imaging with ETDRS 7-Standard Field Photography for Diabetic Retinopathy and Diabetic Macular Edema.
    Salongcay RP; Aquino LAC; Salva CMG; Saunar AV; Alog GP; Sun JK; Peto T; Silva PS
    Ophthalmol Retina; 2022 Jul; 6(7):548-556. PubMed ID: 35278726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Head to head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence.
    Doğan ME; Bilgin AB; Sari R; Bulut M; Akar Y; Aydemir M
    Eye (Lond); 2024 Jun; 38(9):1694-1701. PubMed ID: 38467864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical validation of a smartphone-based retinal camera for diabetic retinopathy screening.
    de Oliveira JAE; Nakayama LF; Zago Ribeiro L; de Oliveira TVF; Choi SNJH; Neto EM; Cardoso VS; Dib SA; Melo GB; Regatieri CVS; Malerbi FK
    Acta Diabetol; 2023 Aug; 60(8):1075-1081. PubMed ID: 37149834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy.
    Pawar B; Lobo SN; Joseph M; Jegannathan S; Jayraj H
    Middle East Afr J Ophthalmol; 2021; 28(2):81-86. PubMed ID: 34759664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Screening for diabetic retinopathy by non-mydriatic fundus photography: First national campaign in Lebanon].
    Arej N; Antoun J; Waked R; Saab C; Saleh M; Waked N
    J Fr Ophtalmol; 2019 Mar; 42(3):288-294. PubMed ID: 30857804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetic Retinopathy Screening Using Artificial Intelligence and Handheld Smartphone-Based Retinal Camera.
    Malerbi FK; Andrade RE; Morales PH; Stuchi JA; Lencione D; de Paulo JV; Carvalho MP; Nunes FS; Rocha RM; Ferraz DA; Belfort R
    J Diabetes Sci Technol; 2022 May; 16(3):716-723. PubMed ID: 33435711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of an AI system for the detection of diabetic retinopathy from images captured with a handheld portable fundus camera: the MAILOR AI study.
    Rogers TW; Gonzalez-Bueno J; Garcia Franco R; Lopez Star E; Méndez Marín D; Vassallo J; Lansingh VC; Trikha S; Jaccard N
    Eye (Lond); 2021 Feb; 35(2):632-638. PubMed ID: 32382145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Telemedicine Screening of Diabetic Retinopathy by Mydriatic Smartphone-Based vs Nonmydriatic Tabletop Camera-Based Fundus Imaging.
    Han YS; Pathipati M; Pan C; Leung LS; Blumenkranz MS; Myung D; Toy BC
    J Vitreoretin Dis; 2021 May; 5(3):199-207. PubMed ID: 34632255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital.
    Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J
    Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic Accuracy of Hand-Held Fundus Camera and Artificial Intelligence in Diabetic Retinopathy Screening.
    Tomić M; Vrabec R; Hendelja Đ; Kolarić V; Bulum T; Rahelić D
    Biomedicines; 2023 Dec; 12(1):. PubMed ID: 38255141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Identification of Different Severity Levels of Diabetic Retinopathy Using a Handheld Fundus Camera and Single-Image Protocol.
    Malerbi FK; Nakayama LF; Melo GB; Stuchi JA; Lencione D; Prado PV; Ribeiro LZ; Dib SA; Regatieri CV
    Ophthalmol Sci; 2024; 4(4):100481. PubMed ID: 38694494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetic retinopathy screening with confocal fundus camera and artificial intelligence - assisted grading.
    Piatti A; Rui C; Gazzina S; Tartaglino B; Romeo F; Manti R; Doglio M; Nada E; Giorda CB
    Eur J Ophthalmol; 2024 Aug; ():11206721241272229. PubMed ID: 39109554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.