BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35566844)

  • 1. A Facile and Cost-Effective Method to Prepare Biodegradable Poly(ester urethane)s with Ordered Aliphatic Hard-Segments for Promising Medical Application as Long-Term Implants.
    Bi J; Liu Y; Liu J
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content.
    Zhang L; Zhang C; Zhang W; Zhang H; Hou Z
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility.
    Hou Z; Xu J; Teng J; Jia Q; Wang X
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110571. PubMed ID: 32228944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradable Poly(ether-ester-urethane)s Based on Well-Defined Aliphatic Diurethane Diisocyanate with Excellent Shape Recovery Properties at Body Temperature for Biomedical Application.
    Xiao M; Zhang N; Zhuang J; Sun Y; Ren F; Zhang W; Hou Z
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31195671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mild method for surface-grafting MPC onto poly(ester-urethane) based on aliphatic diurethane diisocyanate with high grafting efficiency.
    Liu X; Yang B; Hou Z; Zhang N; Gao Y
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109952. PubMed ID: 31499985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.
    Liu X; Xia Y; Liu L; Zhang D; Hou Z
    J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Tensile Properties, Biostability, and Biocompatibility of Siloxane-Cross-Linked Polyurethane Containing Ordered Hard Segments for Durable Implant Application.
    Wu X; Jia H; Fu W; Li M; Pan Y
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced hemocompatibility and antibacterial activity of biodegradable poly(ester-urethane) modified with quercetin and phosphorylcholine for durable blood-contacting applications.
    Hao T; Niu G; Zhang H; Zhu Y; Zhang C; Kong F; Xu J; Hou Z
    J Mater Chem B; 2023 Jun; 11(25):5846-5855. PubMed ID: 37291983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and in Vitro Cytocompatibility of Segmented Poly(Ester-Urethane)s and Poly(Ester-Urea-Urethane)s for Bone Tissue Engineering.
    González-García DM; Marcos-Fernández Á; Rodríguez-Lorenzo LM; Jiménez-Gallegos R; Vargas-Becerril N; Téllez-Jurado L
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Non-Isocyanate Route to Poly(Ether Urethane): Synthesis and Effect of Chemical Structures of Hard Segment.
    Shen Z; Zheng L; Song D; Liu Y; Li C; Liu J; Xiao Y; Wu S; Zhou T; Zhang B; Lv X; Mei Q
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-linked poly(ester urethane)/starch composite films with high starch content as sustainable food-packaging materials: Influence of cross-link density.
    Liu Z; Chen L; Qu L; Zhang R; Qin Z; Zhang H; Wei J; Xu J; Hou Z
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128441. PubMed ID: 38013081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes.
    Christenson EM; Dadsetan M; Hiltner A
    J Biomed Mater Res A; 2005 Aug; 74(2):141-55. PubMed ID: 16201029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility.
    Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M
    J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing gemini quaternary ammonium cationic groups.
    Ding M; Li J; Fu X; Zhou J; Tan H; Gu Q; Fu Q
    Biomacromolecules; 2009 Oct; 10(10):2857-65. PubMed ID: 19817491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility.
    Guan J; Sacks MS; Beckman EJ; Wagner WR
    Biomaterials; 2004 Jan; 25(1):85-96. PubMed ID: 14580912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, Physicochemical Properties, and Hemocompatibility of the Composites Based on Biodegradable Poly(Ether-Ester-Urethane) and Phosphorylcholine-Containing Copolymer.
    Zhang J; Yang B; Jia Q; Xiao M; Hou Z
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31083573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun biodegradable calcium containing poly(ester-urethane)urea: synthesis, fabrication, in vitro degradation, and biocompatibility evaluation.
    Nair PA; Ramesh P
    J Biomed Mater Res A; 2013 Jul; 101(7):1876-87. PubMed ID: 23712992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.