BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35566844)

  • 21. Characterization of a resorbable poly(ester urethane) with biodegradable hard segments.
    Dempsey DK; Robinson JL; Iyer AV; Parakka JP; Bezwada RS; Cosgriff-Hernandez EM
    J Biomater Sci Polym Ed; 2014; 25(6):535-54. PubMed ID: 24483140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol).
    Loh XJ; Tan KK; Li X; Li J
    Biomaterials; 2006 Mar; 27(9):1841-50. PubMed ID: 16305807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. l-Leucine-Based Poly(ester urea)s for Vascular Tissue Engineering.
    Gao Y; Childers EP; Becker ML
    ACS Biomater Sci Eng; 2015 Sep; 1(9):795-804. PubMed ID: 33445257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.
    Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR
    Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular hydrogels based on custom-made poly(ether urethane)s and cyclodextrins as potential drug delivery vehicles: design and characterization.
    Torchio A; Boffito M; Gallina A; Lavella M; Cassino C; Ciardelli G
    J Mater Chem B; 2020 Sep; 8(34):7696-7712. PubMed ID: 32724983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites.
    Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ
    J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile Method for Surface-Grafted Chitooligosaccharide on Medical Segmented Poly(ester-urethane) Film to Improve Surface Biocompatibility.
    Liu Y; Liu Z; Gao Y; Gao W; Hou Z; Zhu Y
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33406798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine.
    Guan J; Sacks MS; Beckman EJ; Wagner WR
    J Biomed Mater Res; 2002 Sep; 61(3):493-503. PubMed ID: 12115475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol).
    Loh XJ; Colin Sng KB; Li J
    Biomaterials; 2008 Aug; 29(22):3185-94. PubMed ID: 18456319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospun poly(ester-Urethane)- and poly(ester-Urethane-Urea) fleeces as promising tissue engineering scaffolds for adipose-derived stem cells.
    Gugerell A; Kober J; Laube T; Walter T; Nürnberger S; Grönniger E; Brönneke S; Wyrwa R; Schnabelrauch M; Keck M
    PLoS One; 2014; 9(3):e90676. PubMed ID: 24594923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane.
    Xu W; Xiao M; Yuan L; Zhang J; Hou Z
    Polymers (Basel); 2018 May; 10(6):. PubMed ID: 30966614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preclinical in Vitro and in Vivo Assessment of Linear and Branched l-Valine-Based Poly(ester urea)s for Soft Tissue Applications.
    Dreger NZ; Wandel MB; Robinson LL; Luong D; Søndergaard CS; Hiles M; Premanandan C; Becker ML
    ACS Biomater Sci Eng; 2018 Apr; 4(4):1346-1356. PubMed ID: 33418665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tough combinatorial poly(urethane-isocyanurate) polymer networks and hydrogels synthesized by the trimerization of mixtures of NCO-prepolymers.
    Driest PJ; Dijkstra DJ; Stamatialis D; Grijpma DW
    Acta Biomater; 2020 Mar; 105():87-96. PubMed ID: 31978622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and Characterization of Plug-and-Play Polyurethane Urea Elastomers as Biodegradable Matrixes for Tissue Engineering Applications.
    Kishan AP; Wilems T; Mohiuddin S; Cosgriff-Hernandez EM
    ACS Biomater Sci Eng; 2017 Dec; 3(12):3493-3502. PubMed ID: 33445385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products.
    van Minnen B; Stegenga B; van Leeuwen MB; van Kooten TG; Bos RR
    J Biomed Mater Res A; 2006 Feb; 76(2):377-85. PubMed ID: 16270347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular interactions and degradation of aliphatic poly(ester amide)s derived from glycine and/or 4-amino butyric acid.
    Han SI; Kim BS; Kang SW; Shirai H; Im SS
    Biomaterials; 2003 Sep; 24(20):3453-62. PubMed ID: 12809774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications.
    Barrioni BR; de Carvalho SM; Oréfice RL; de Oliveira AA; Pereira Mde M
    Mater Sci Eng C Mater Biol Appl; 2015; 52():22-30. PubMed ID: 25953536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation.
    Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA
    Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.