BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35567011)

  • 1. The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes.
    Tamayo-Vegas S; Muhsan A; Liu C; Tarfaoui M; Lafdi K
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35567011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the Equivalent Fiber Approach in Two-Scale Modeling of the Elastic Behavior of Carbon Nanotube/Epoxy Nanocomposite.
    Javadinejad M; Mashayekhi M; Karevan M; Hadavinia H
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agglomeration effect on biomechanical performance of CNT-reinforced dental implant using micromechanics-based approach.
    Elleuch S; Jrad H; Wali M; Dammak F
    J Mech Behav Biomed Mater; 2023 Sep; 145():106023. PubMed ID: 37494815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of CNT Length on Dispersion, Localization, and Electrical Percolation in a Styrene-Butadiene-Based Star Block Copolymer.
    Staudinger U; Janke A; Steinbach C; Reuter U; Ganß M; Voigt O
    Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial and Filler Size Effects on Mechanical/Thermal/Electrical Properties of CNTs-Reinforced Nanocomposites.
    Wang J; Duan X; Gong L; Nie S
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Micromechanics Investigation of Percolation and Effective Electro-Mechanical Properties of Carbon Nanotube/Polymer Nanocomposites using Stochastically Generated Realizations: Effects of Orientation and Waviness.
    Talamadupula KK; Seidel G
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Recycling of Ethylene-Vinyl Acetate/Carbon Nanotube Nanocomposites: Processing, Thermal, Rheological, Mechanical and Electrical Behavior.
    Sandu IL; Stan F; Fetecau C
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of Sonication Processing Conditions on Electrical and Mechanical Properties of Single and Hybrid Epoxy Nanocomposites Filled with Carbon Nanoparticles.
    de Oliveira MM; Forsberg S; Selegård L; Carastan DJ
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites.
    Gardea F; Glaz B; Riddick J; Lagoudas DC; Naraghi M
    Nanotechnology; 2016 Mar; 27(10):105707. PubMed ID: 26866611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation.
    Spanos P; Elsbernd P; Ward B; Koenck T
    Philos Trans A Math Phys Eng Sci; 2013 Jun; 371(1993):20120494. PubMed ID: 23690646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Composite Containing Carbon Nanotubes and their Applications.
    Park SH; Bae J
    Recent Pat Nanotechnol; 2017 Jul; 11(2):109-115. PubMed ID: 27978788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and Water Uptake Properties of Epoxy Nanocomposites with Surfactant-Modified Functionalized Multiwalled Carbon Nanotubes.
    Uthaman A; Lal HM; Li C; Xian G; Thomas S
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Prediction of Electrical Conductivity Percolation of Poly(lactic acid)-Carbon Nanotube Composites in DC and RF Regime.
    Beltrán FR; Aksas H; Sidi Salah L; Danlée Y; Huynen I
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid formation of carbon nanotubes-natural rubber films cured with glutaraldehyde for reducing percolation threshold concentration.
    Promsung R; Chuaybamrung A; Georgopoulou A; Clemens F; Nakaramontri Y; Johns J; Lehman N; Songtipya L; Kalkornsurapranee E
    Discov Nano; 2024 Feb; 19(1):30. PubMed ID: 38372836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites.
    Zare Y; Rhee KY
    RSC Adv; 2019 Dec; 10(1):424-433. PubMed ID: 35492511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full elastic constitutive relation of non-isotropic aligned-CNT/PDMS flexible nanocomposites.
    Sepúlveda AT; Guzman de Villoria R; Viana JC; Pontes AJ; Wardle BL; Rocha LA
    Nanoscale; 2013 Jun; 5(11):4847-54. PubMed ID: 23616092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of Percolation Threshold, Tunneling Distance, and Conductivity for Carbon Nanotube (CNT)-Reinforced Nanocomposites Assuming Effective CNT Concentration.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31948024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing Multi-Walled Carbon Nanotubes and Halloysite Nanotubes as Reinforcements in EVA Nanocomposites.
    Zubkiewicz A; Szymczyk A; Franciszczak P; Kochmanska A; Janowska I; Paszkiewicz S
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular dynamics investigation for predicting the effect of various parameters on the mechanical properties of carbon nanotube-reinforced aluminum nanocomposites.
    Patel PR; Sharma S; Tiwari SK
    J Mol Model; 2020 Aug; 26(9):238. PubMed ID: 32813056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes.
    Bao WS; Meguid SA; Zhu ZH; Meguid MJ
    Nanotechnology; 2011 Dec; 22(48):485704. PubMed ID: 22071680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.