BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35567086)

  • 1. Comparative Study on Macro-Tribological Properties of PLL-g-PEG and PSPMA Polymer Brushes.
    Ren F; Yang S; Wu Y; Guo F; Zhou F
    Polymers (Basel); 2022 May; 14(9):. PubMed ID: 35567086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-proteinaceous bacterial adhesins challenge the antifouling properties of polymer brush coatings.
    Zeng G; Ogaki R; Meyer RL
    Acta Biomater; 2015 Sep; 24():64-73. PubMed ID: 26093067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetting Behavior and Tribological Properties of Polymer Brushes on Laser-Textured Surface.
    Shen MX; Zhang ZX; Yang JT; Xiong GY
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31167341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tribological properties of hydrophilic polymer brushes under wet conditions.
    Kobayashi M; Takahara A
    Chem Rec; 2010 Aug; 10(4):208-16. PubMed ID: 20533448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring lubrication regimes at the nanoscale: nanotribological characterization of silica and polymer brushes in viscous solvents.
    Nalam PC; Ramakrishna SN; Espinosa-Marzal RM; Spencer ND
    Langmuir; 2013 Aug; 29(32):10149-58. PubMed ID: 23859353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesion and friction properties of polymer brushes on rough surfaces: a gradient approach.
    Ramakrishna SN; Espinosa-Marzal RM; Naik VV; Nalam PC; Spencer ND
    Langmuir; 2013 Dec; 29(49):15251-9. PubMed ID: 24266663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotribology of surface-grafted PEG layers in an aqueous environment.
    Drobek T; Spencer ND
    Langmuir; 2008 Feb; 24(4):1484-8. PubMed ID: 17939696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption properties of poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) at a hydrophobic interface: influence of tribological stress, pH, salt concentration, and polymer molecular weight.
    Lee S; Spencer ND
    Langmuir; 2008 Sep; 24(17):9479-88. PubMed ID: 18652428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation-dominated surface antifouling and aqueous lubrication.
    Wang H; Zhang Z; Chen J; Lian C; Han X; Liu H
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112452. PubMed ID: 35325866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density zwitterionic polymer brushes exhibit robust lubrication properties and high antithrombotic efficacy in blood-contacting medical devices.
    Song X; Man J; Qiu Y; Wang J; Liu J; Li R; Zhang Y; Li J; Li J; Chen Y
    Acta Biomater; 2024 Apr; 178():111-123. PubMed ID: 38423351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Chain Stiffness, Grafting Density and Normal Load on the Tribological and Structural Behavior of Polymer Brushes: A Nonequilibrium-Molecular-Dynamics Study.
    Singh MK; Ilg P; Espinosa-Marzal RM; Spencer ND; Kröger M
    Polymers (Basel); 2016 Jul; 8(7):. PubMed ID: 30974530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tribological Behavior of Grafted Nanoparticle on Polymer-Brushed Walls: A Dissipative Particle Dynamics Study.
    Nguyen VP; Phi PQ; Choi ST
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11988-11998. PubMed ID: 30821436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.
    Kobayashi M; Terada M; Takahara A
    Faraday Discuss; 2012; 156():403-12; discussion 413-34. PubMed ID: 23285641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of brush thickness and solvent composition on the friction force response of poly(2-(methacryloyloxy)ethylphosphorylcholine) brushes.
    Zhang Z; Morse AJ; Armes SP; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2011 Mar; 27(6):2514-21. PubMed ID: 21319847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft/Hard-Coupled Amphiphilic Polymer Nanospheres for Water Lubrication.
    Li Z; Ma S; Zhang G; Wang D; Zhou F
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):9178-9187. PubMed ID: 29468880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydopamine-Assisted Immobilization of Chitosan Brushes on a Textured CoCrMo Alloy to Improve its Tribology and Biocompatibility.
    Qin L; Sun H; Hafezi M; Zhang Y
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31533271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interferometry study of aqueous lubrication on the surface of polyelectrolyte brush.
    Kobayashi M; Tanaka H; Minn M; Sugimura J; Takahara A
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20365-71. PubMed ID: 25340883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged polymer brushes-grafted hollow silica nanoparticles as a novel promising material for simultaneous joint lubrication and treatment.
    Liu G; Cai M; Zhou F; Liu W
    J Phys Chem B; 2014 May; 118(18):4920-31. PubMed ID: 24735439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the kinetic friction of planar neutral and polyelectrolyte polymer brushes using molecular dynamics simulations.
    Ou Y; Sokoloff JB; Stevens MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011801. PubMed ID: 22400584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.