BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35567297)

  • 1. Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense.
    Athukoralage JS; White MF
    Annu Rev Virol; 2022 Sep; 9(1):451-468. PubMed ID: 35567297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial origins of cyclic nucleotide-activated antiviral immune signaling.
    Patel DJ; Yu Y; Jia N
    Mol Cell; 2022 Dec; 82(24):4591-4610. PubMed ID: 36460008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity.
    Hobbs SJ; Wein T; Lu A; Morehouse BR; Schnabel J; Leavitt A; Yirmiya E; Sorek R; Kranzusch PJ
    Nature; 2022 May; 605(7910):522-526. PubMed ID: 35395152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CBASS phage defense and evolution of antiviral nucleotide signaling.
    Duncan-Lowey B; Kranzusch PJ
    Curr Opin Immunol; 2022 Feb; 74():156-163. PubMed ID: 35123147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages.
    Tal N; Morehouse BR; Millman A; Stokar-Avihail A; Avraham C; Fedorenko T; Yirmiya E; Herbst E; Brandis A; Mehlman T; Oppenheimer-Shaanan Y; Keszei AFA; Shao S; Amitai G; Kranzusch PJ; Sorek R
    Cell; 2021 Nov; 184(23):5728-5739.e16. PubMed ID: 34644530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR antiphage defence mediated by the cyclic nucleotide-binding membrane protein Csx23.
    Grüschow S; McQuarrie S; Ackermann K; McMahon S; Bode BE; Gloster TM; White MF
    Nucleic Acids Res; 2024 Apr; 52(6):2761-2775. PubMed ID: 38471818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of Pectobacterium Bacteriophage ΦM1 To Escape Two Bifunctional Type III Toxin-Antitoxin and Abortive Infection Systems through Mutations in a Single Viral Gene.
    Blower TR; Chai R; Przybilski R; Chindhy S; Fang X; Kidman SE; Tan H; Luisi BF; Fineran PC; Salmond GPC
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense.
    Duncan-Lowey B; McNamara-Bordewick NK; Tal N; Sorek R; Kranzusch PJ
    Mol Cell; 2021 Dec; 81(24):5039-5051.e5. PubMed ID: 34784509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shoot the Messenger! A New Phage Weapon to Neutralize the Type III CRISPR Immune Response.
    Shilton AK; Marraffini LA
    Mol Cell; 2020 May; 78(4):568-569. PubMed ID: 32442502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [CRISPR/Cas systems in genome engineering of bacteriophages].
    Liang CJ; Meng FM; Ai YC
    Yi Chuan; 2018 May; 40(5):378-389. PubMed ID: 29785946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In defense of phage: viral suppressors of CRISPR-mediated adaptive immunity in bacteria.
    Wiedenheft B
    RNA Biol; 2013 May; 10(5):886-90. PubMed ID: 23392292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas: Spacer Diversity Determines the Efficiency of Defense.
    Lopatina A; Sorek R
    Curr Biol; 2016 Jul; 26(14):R683-5. PubMed ID: 27458917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specialized Weaponry: How a Type III-A CRISPR-Cas System Excels at Combating Phages.
    Niewoehner O; Jinek M
    Cell Host Microbe; 2017 Sep; 22(3):258-259. PubMed ID: 28910631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CBASS Immunity Uses CARF-Related Effectors to Sense 3'-5'- and 2'-5'-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection.
    Lowey B; Whiteley AT; Keszei AFA; Morehouse BR; Mathews IT; Antine SP; Cabrera VJ; Kashin D; Niemann P; Jain M; Schwede F; Mekalanos JJ; Shao S; Lee ASY; Kranzusch PJ
    Cell; 2020 Jul; 182(1):38-49.e17. PubMed ID: 32544385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Analysis of Antiphage Defense Mechanisms: Serovar-Specific Patterns.
    Petakh P; Oksenych V; Khovpey Y; Kamyshnyi O
    Antibiotics (Basel); 2024 Jun; 13(6):. PubMed ID: 38927188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic properties of CARF-domain proteins in
    Ding J; Schuergers N; Baehre H; Wilde A
    Front Microbiol; 2022; 13():1046388. PubMed ID: 36419420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of CRISPR-Cas Type III prokaryotic defence systems.
    Molina R; Sofos N; Montoya G
    Curr Opin Struct Biol; 2020 Dec; 65():119-129. PubMed ID: 32712502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity.
    Lau RK; Ye Q; Birkholz EA; Berg KR; Patel L; Mathews IT; Watrous JD; Ego K; Whiteley AT; Lowey B; Mekalanos JJ; Kranzusch PJ; Jain M; Pogliano J; Corbett KD
    Mol Cell; 2020 Feb; 77(4):723-733.e6. PubMed ID: 31932164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.