BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35567992)

  • 1. An integrated network pharmacology and cell metabolomics approach to reveal the role of rhein, a novel PPARα agonist, against renal fibrosis by activating the PPARα-CPT1A axis.
    Xiao Q; Yu X; Yu X; Liu S; Jiang J; Cheng Y; Lin H; Wang Y; Zhang X; Ye X; Xiang Z
    Phytomedicine; 2022 Jul; 102():154147. PubMed ID: 35567992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhein Improves Renal Fibrosis by Restoring Cpt1a-Mediated Fatty Acid Oxidation through SirT1/STAT3/twist1 Pathway.
    Song X; Du Z; Yao Z; Tang X; Zhang M
    Molecules; 2022 Apr; 27(7):. PubMed ID: 35408745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative and network pharmacology: A case study of rhein alleviating pathological progress of renal interstitial fibrosis.
    Shen Y; Feng F; Sun H; Li G; Xiang Z
    J Ethnopharmacol; 2020 Oct; 261():113106. PubMed ID: 32553981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell and rat serum, urine and tissue metabolomics analysis elucidates the key pathway changes associated with chronic nephropathy and reveals the mechanism of action of rhein.
    Wang L; Yu X; Li H; He D; Zeng S; Xiang Z
    Chin Med; 2023 Dec; 18(1):158. PubMed ID: 38041193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impairment of PPAR
    Chung KW; Lee EK; Lee MK; Oh GT; Yu BP; Chung HY
    J Am Soc Nephrol; 2018 Apr; 29(4):1223-1237. PubMed ID: 29440279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacokinetics and pharmacodynamics study of rhein treating renal fibrosis based on metabonomics approach.
    Sun H; Luo G; Xiang Z; Cai X; Chen D
    Phytomedicine; 2016 Dec; 23(13):1661-1670. PubMed ID: 27823631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPARα/β Activation Alleviates Age-Associated Renal Fibrosis in Sprague Dawley Rats.
    Chung KW; Ha S; Kim SM; Kim DH; An HJ; Lee EK; Moon HR; Chung HY
    J Gerontol A Biol Sci Med Sci; 2020 Feb; 75(3):452-458. PubMed ID: 31112599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Icariside II prevents kidney fibrosis development in chronic kidney disease by promoting fatty acid oxidation.
    Wang M; Wang J; Wang L; Feng X; Qian Y; Ye C; Wang C
    Phytother Res; 2024 Feb; 38(2):839-855. PubMed ID: 38081477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of metabolomics and network pharmacology to reveal the protective mechanism underlying Wogonoside in acute myocardial ischemia rats.
    Feng W; Duan C; Pan F; Yan C; Dong H; Wang X; Zhang J
    J Ethnopharmacol; 2023 Dec; 317():116871. PubMed ID: 37393028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periostin contributes to renal and cardiac dysfunction in rats with chronic kidney disease: Reduction of PPARα.
    Bian X; Su X; Wang Y; Zhao G; Zhang B; Li D
    Biochimie; 2019 May; 160():172-182. PubMed ID: 30890453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The study on the material basis and the mechanism for anti-renal interstitial fibrosis efficacy of rhubarb through integration of metabonomics and network pharmacology.
    Xiang Z; Sun H; Cai X; Chen D; Zheng X
    Mol Biosyst; 2015 Apr; 11(4):1067-78. PubMed ID: 25630238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal protection of rhein against 5/6 nephrectomied-induced chronic kidney disease: role of SIRT3-FOXO3α signalling pathway.
    Wu X; Liu M; Wei G; Guan Y; Duan J; Xi M; Wang J
    J Pharm Pharmacol; 2020 May; 72(5):699-708. PubMed ID: 32196681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis.
    Jao TM; Nangaku M; Wu CH; Sugahara M; Saito H; Maekawa H; Ishimoto Y; Aoe M; Inoue T; Tanaka T; Staels B; Mori K; Inagi R
    Kidney Int; 2019 Mar; 95(3):577-589. PubMed ID: 30639234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression CPT1A reduces lipid accumulation via PPARα/CD36 axis to suppress the cell proliferation in ccRCC.
    Yang H; Zhao H; Ren Z; Yi X; Zhang Q; Yang Z; Kuang Y; Zhu Y
    Acta Biochim Biophys Sin (Shanghai); 2022 Jan; 54(2):220-231. PubMed ID: 35130611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated analysis of comprehensive metabolomics and network pharmacology to reveal the mechanisms of
    Liao JC; Li CY; Teng FM; Jian-Chen ; Yu JY; Ju WZ; Zou JD
    Front Pharmacol; 2022; 13():1064498. PubMed ID: 36467079
    [No Abstract]   [Full Text] [Related]  

  • 16. Preventive effects and mechanisms of rhein on renal interstitial fibrosis in obstructive nephropathy.
    He D; Lee L; Yang J; Wang X
    Biol Pharm Bull; 2011; 34(8):1219-26. PubMed ID: 21804209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomics coupled with integrative pharmacology reveal the protective effect of FangjiHuangqi Decoction against adriamycin-induced rat nephropathy model.
    Zhang WN; Yang L; He SS; Qin XM; Li AP
    J Pharm Biomed Anal; 2019 Sep; 174():525-533. PubMed ID: 31252309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated strategy for identifying new targets and inferring the mechanism of action: taking rhein as an example.
    Sun H; Shen Y; Luo G; Cai Y; Xiang Z
    BMC Bioinformatics; 2018 Sep; 19(1):315. PubMed ID: 30189851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toll-like receptor 4 is involved in a protective effect of rhein on immunoglobulin A nephropathy.
    Chen X; Peng S; Zeng H; Fu A; Zhu Q
    Indian J Pharmacol; 2015; 47(1):27-33. PubMed ID: 25821307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BML-111 Attenuates Renal Ischemia/Reperfusion Injury Via Peroxisome Proliferator-Activated Receptor-α-Regulated Heme Oxygenase-1.
    Wu SH; Chen XQ; Lü J; Wang MJ
    Inflammation; 2016 Apr; 39(2):611-24. PubMed ID: 26597893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.