These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35568005)

  • 1. Efficient separation of He/CH
    Pakdel S; Erfan-Niya H; Azamat J
    J Mol Graph Model; 2022 Sep; 115():108211. PubMed ID: 35568005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency helium separation through an inorganic graphenylene membrane: a theoretical study.
    Wang L; Li F; Wang J; Li Y; Li W; Yang Y; Zhao M; Qu Y
    Phys Chem Chem Phys; 2020 May; 22(17):9789-9795. PubMed ID: 32337529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient helium purification through a dual-membrane system: insights from molecular dynamics simulations.
    Pakdel S; Erfan-Niya H; Azamat J; Hasanzadeh A
    Phys Chem Chem Phys; 2023 Nov; 25(44):30572-30582. PubMed ID: 37929921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphenylene and inorganic graphenylene nanopores for gas-phase
    Motallebipour MS; Karimi-Sabet J
    Phys Chem Chem Phys; 2021 Jul; 23(27):14706-14715. PubMed ID: 34190225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient
    Qu Y; Li F; Zhao M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21522-21526. PubMed ID: 28762419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic understanding on desalination performance of pristine graphenylene nanosheet membrane at high applied pressures.
    Jahangirzadeh M; Bajgiran NK; Majidi S; Azamat J; Erfan-Niya H
    J Mol Graph Model; 2024 Jul; 132():108833. PubMed ID: 39042997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the performance of RHO type zeolite membrane for CH
    Ghasemi F; Alizadeh M; Azamat J; Erfan-Niya H
    J Mol Graph Model; 2024 Mar; 127():108673. PubMed ID: 37992551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defective germanene as a high-efficiency helium separation membrane: a first-principles study.
    Zhu L; Chang X; He D; Xue Q; Li X; Jin Y; Zheng H; Ling C
    Nanotechnology; 2017 Mar; 28(13):135703. PubMed ID: 28248644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeation of binary gas mixtures in ultramicroporous membranes.
    da Costa JC; Lu GQ; Rudolph V
    J Nanosci Nanotechnol; 2004 Mar; 4(3):265-9. PubMed ID: 15233087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of marine environments on methane hydrate formation in clay nanopores: A molecular dynamics study.
    Mi F; He Z; Jiang G; Ning F
    Sci Total Environ; 2022 Dec; 852():158454. PubMed ID: 36063931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of methane adsorption and displacement from graphenylene shale reservoir nanochannels.
    Hajianzadeh M; Mahmoudi J; Sadeghzadeh S
    Sci Rep; 2023 Sep; 13(1):15765. PubMed ID: 37737234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Studies on Holey TMC
    Xie J; Ning C; Liu Q; Sun Z; Yang J; Dong H
    Membranes (Basel); 2022 Jul; 12(7):. PubMed ID: 35877912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of molecular permeation through nanoporous graphene membranes.
    Sun C; Boutilier MS; Au H; Poesio P; Bai B; Karnik R; Hadjiconstantinou NG
    Langmuir; 2014 Jan; 30(2):675-82. PubMed ID: 24364726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen separation with a graphenylene monolayer: Diffusion Monte Carlo study.
    Lee G; Hong I; Ahn J; Shin H; Benali A; Kwon Y
    J Chem Phys; 2022 Oct; 157(14):144703. PubMed ID: 36243533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Polybenzimidazole Membranes for Helium Extraction from Natural Gas.
    Wang X; Shan M; Liu X; Wang M; Doherty CM; Osadchii D; Kapteijn F
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20098-20103. PubMed ID: 31094508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.
    Jiao S; Xu Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9052-9. PubMed ID: 25868398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multicomponent gas separation and purification using advanced 2D carbonaceous nanomaterials.
    Mahdizadeh SJ; Goharshadi EK
    RSC Adv; 2020 Jun; 10(41):24255-24264. PubMed ID: 35516204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Helium Separation with Two-Dimensional Metal-Organic Framework Fe/Ni-PTC: A Theoretical Study.
    Wang J; Li Y; Yang Y; Li Y; Zhao M; Li W; Guan J; Qu Y
    Membranes (Basel); 2021 Nov; 11(12):. PubMed ID: 34940428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.