These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35568696)

  • 1. A novel approach to control Botrytis cinerea fungal infections: uptake and biological activity of antifungals encapsulated in nanoparticle based vectors.
    De Angelis G; Simonetti G; Chronopoulou L; Orekhova A; Badiali C; Petruccelli V; Portoghesi F; D'Angeli S; Brasili E; Pasqua G; Palocci C
    Sci Rep; 2022 May; 12(1):7989. PubMed ID: 35568696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.
    He L; Liu Y; Mustapha A; Lin M
    Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligomycin-producing
    Louviot F; Abdelrahman O; Abou-Mansour E; L'Haridon F; Allard P-M; Falquet L; Weisskopf L
    mSphere; 2024 Jul; 9(7):e0066723. PubMed ID: 38864637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanistic insights of essential oil of Mentha piperita to control Botrytis cinerea and the prospection of lipid nanoparticles to its application.
    Fuentes JM; Jofré I; Tortella G; Benavides-Mendoza A; Diez MC; Rubilar O; Fincheira P
    Microbiol Res; 2024 Sep; 286():127792. PubMed ID: 38852300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-Synthesis of Chloroxaloterpin A and B and Their Antifungal Activity against
    Zhang L; Wang X; Bi Y; Yu Z
    J Agric Food Chem; 2022 Jun; 70(23):7070-7076. PubMed ID: 35652483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-Structural Alterations in
    Youssef K; Roberto SR; de Oliveira AG
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea.
    Yang D; Shi H; Zhang K; Liu X; Ma L
    Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrolactin R from Bacillus siamensis and its antifungal activity against Botrytis cinerea.
    Ni J; Yu L; Li F; Li Y; Zhang M; Deng Y; Liu X
    World J Microbiol Biotechnol; 2023 Mar; 39(5):117. PubMed ID: 36918502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crucial Role of the Ca
    Wang Y; Yu Y; Hou YP; Mao XW; Liu ZL; Cui J; Wang B; Xu S; Qian YY; Jiang YQ; Wei M; Song PP
    J Agric Food Chem; 2023 Jun; 71(25):9772-9781. PubMed ID: 37313981
    [No Abstract]   [Full Text] [Related]  

  • 12. Anti-
    Simonetti G; Palocci C; Valletta A; Kolesova O; Chronopoulou L; Donati L; Di Nitto A; Brasili E; Tomai P; Gentili A; Pasqua G
    Molecules; 2019 May; 24(11):. PubMed ID: 31151290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen.
    Choi GJ; Kim JC; Jang KS; Cho KY; Kim HT
    J Microbiol Biotechnol; 2008 Jan; 18(1):167-70. PubMed ID: 18239435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent
    Hao Y; Cao X; Ma C; Zhang Z; Zhao N; Ali A; Hou T; Xiang Z; Zhuang J; Wu S; Xing B; Zhang Z; Rui Y
    Front Plant Sci; 2017; 8():1332. PubMed ID: 28824670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different Size Formulations of Fluopyram: Preparation, Antifungal Activity, and Accumulation in the Fungal Pathogen
    Wang Y; Zhang S; Xu Y; Li H; Zhang R; Chen D; Xu J; Wu X
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size dependency of PLGA-nanoparticle uptake and antifungal activity against Aspergillus flavus.
    Patel NR; Damann K; Leonardi C; Sabliov CM
    Nanomedicine (Lond); 2011 Oct; 6(8):1381-95. PubMed ID: 21651442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights.
    Abdel-Rahim IR; Abo-Elyousr KAM
    Microbiol Res; 2018; 212-213():1-9. PubMed ID: 29853163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Broccoli Glucosinolates Hydrolysis Products on
    Román J; Lagos A; Mahn A; Quintero J
    Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry.
    Moussa SH; Tayel AA; Alsohim AS; Abdallah RR
    J Food Sci; 2013 Oct; 78(10):M1589-M1594. PubMed ID: 24025030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Autophagy Gene
    Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.