BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 35568789)

  • 1. CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update.
    Chaudhary M; Mukherjee TK; Singh R; Gupta M; Goyal S; Singhal P; Kumar R; Bhusal N; Sharma P
    Mol Biol Rep; 2022 Jul; 49(7):7101-7110. PubMed ID: 35568789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants.
    Singh J; Sharma D; Brar GS; Sandhu KS; Wani SH; Kashyap R; Kour A; Singh S
    Mol Biol Rep; 2022 Dec; 49(12):11443-11467. PubMed ID: 36002653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adoption of CRISPR-Cas for crop production: present status and future prospects.
    Akanmu AO; Asemoloye MD; Marchisio MA; Babalola OO
    PeerJ; 2024; 12():e17402. PubMed ID: 38860212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives.
    Wang Y; Zafar N; Ali Q; Manghwar H; Wang G; Yu L; Ding X; Ding F; Hong N; Wang G; Jin S
    Cells; 2022 Dec; 11(23):. PubMed ID: 36497186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-based genome editing in wheat: a comprehensive review and future prospects.
    Kumar R; Kaur A; Pandey A; Mamrutha HM; Singh GP
    Mol Biol Rep; 2019 Jun; 46(3):3557-3569. PubMed ID: 30941642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system.
    Dheer P; Rautela I; Sharma V; Dhiman M; Sharma A; Sharma N; Sharma MD
    Gene; 2020 Aug; 753():144795. PubMed ID: 32450202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises.
    Rasheed A; Gill RA; Hassan MU; Mahmood A; Qari S; Zaman QU; Ilyas M; Aamer M; Batool M; Li H; Wu Z
    Curr Issues Mol Biol; 2021 Nov; 43(3):1950-1976. PubMed ID: 34889892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of CRISPR-Cas9 gene editing technology in crop breeding].
    Yin W; Chen Z; Huang J; Ye H; Lu T; Lu M; Rao Y
    Sheng Wu Gong Cheng Xue Bao; 2023 Feb; 39(2):399-424. PubMed ID: 36847080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement.
    Guo Y; Zhao G; Gao X; Zhang L; Zhang Y; Cai X; Yuan X; Guo X
    Planta; 2023 Jul; 258(2):36. PubMed ID: 37395789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9 for Mutagenesis in Rice.
    Char SN; Li R; Yang B
    Methods Mol Biol; 2019; 1864():279-293. PubMed ID: 30415343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 System: A Potential Tool for Genetic Improvement in Floricultural Crops.
    Sirohi U; Kumar M; Sharma VR; Teotia S; Singh D; Chaudhary V; Priya ; Yadav MK
    Mol Biotechnol; 2022 Dec; 64(12):1303-1318. PubMed ID: 35751797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes.
    Tay Fernandez CG; Nestor BJ; Danilevicz MF; Marsh JI; Petereit J; Bayer PE; Batley J; Edwards D
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review.
    Elsharawy H; Refat M
    Funct Integr Genomics; 2023 Aug; 23(3):265. PubMed ID: 37541970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.