BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35569169)

  • 1. OsGLYI3, a glyoxalase gene expressed in rice seed, contributes to seed longevity and salt stress tolerance.
    Liu S; Liu W; Lai J; Liu Q; Zhang W; Chen Z; Gao J; Song S; Liu J; Xiao Y
    Plant Physiol Biochem; 2022 Jul; 183():85-95. PubMed ID: 35569169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.).
    Zeng Z; Xiong F; Yu X; Gong X; Luo J; Jiang Y; Kuang H; Gao B; Niu X; Liu Y
    Plant Physiol Biochem; 2016 Dec; 109():62-71. PubMed ID: 27639962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyramiding D-lactate dehydrogenase with the glyoxalase pathway enhances abiotic stress tolerance in plants.
    Alam NB; Jain M; Mustafiz A
    Plant Physiol Biochem; 2024 Feb; 207():108391. PubMed ID: 38309183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance.
    Singla-Pareek SL; Reddy MK; Sopory SK
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14672-7. PubMed ID: 14638937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheat
    Wang Y; Zhang Y; An Y; Wu J; He S; Sun L; Hao F
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Os4BGlu14, a monolignol β-Glucosidase, negatively affects seed longevity by influencing primary metabolism in rice.
    Ren RJ; Wang P; Wang LN; Su JP; Sun LJ; Sun Y; Chen DF; Chen XW
    Plant Mol Biol; 2020 Nov; 104(4-5):513-527. PubMed ID: 32833149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress.
    Alvarez Viveros MF; Inostroza-Blancheteau C; Timmermann T; González M; Arce-Johnson P
    Mol Biol Rep; 2013 Apr; 40(4):3281-90. PubMed ID: 23283739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice.
    El-Shabrawi H; Kumar B; Kaul T; Reddy MK; Singla-Pareek SL; Sopory SK
    Protoplasma; 2010 Sep; 245(1-4):85-96. PubMed ID: 20419461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharides from Grateloupia filicina enhance tolerance of rice seeds (Oryza sativa L.) under salt stress.
    Liu H; Chen X; Song L; Li K; Zhang X; Liu S; Qin Y; Li P
    Int J Biol Macromol; 2019 Mar; 124():1197-1204. PubMed ID: 30503791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II.
    Singla-Pareek SL; Yadav SK; Pareek A; Reddy MK; Sopory SK
    Transgenic Res; 2008 Apr; 17(2):171-80. PubMed ID: 17387627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses.
    Mustafiz A; Singh AK; Pareek A; Sopory SK; Singla-Pareek SL
    Funct Integr Genomics; 2011 Jun; 11(2):293-305. PubMed ID: 21213008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses.
    Wu C; Ma C; Pan Y; Gong S; Zhao C; Chen S; Li H
    J Plant Res; 2013 May; 126(3):415-25. PubMed ID: 23203352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA2871b of Dongxiang Wild Rice (
    Yang W; Chen Y; Gao R; Chen Y; Zhou Y; Xie J; Zhang F
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity.
    Huang J; Cai M; Long Q; Liu L; Lin Q; Jiang L; Chen S; Wan J
    Transgenic Res; 2014 Aug; 23(4):643-55. PubMed ID: 24792034
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Wang X; Yu C; Liu Y; Yang L; Li Y; Yao W; Cai Y; Yan X; Li S; Cai Y; Li S; Peng X
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31382584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nuclear-localized rice glyoxalase I enzyme, OsGLYI-8, functions in the detoxification of methylglyoxal in the nucleus.
    Kaur C; Tripathi AK; Nutan KK; Sharma S; Ghosh A; Tripathi JK; Pareek A; Singla-Pareek SL; Sopory SK
    Plant J; 2017 Feb; 89(3):565-576. PubMed ID: 27797431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione.
    Yadav SK; Singla-Pareek SL; Ray M; Reddy MK; Sopory SK
    Biochem Biophys Res Commun; 2005 Nov; 337(1):61-7. PubMed ID: 16176800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice.
    Lou D; Wang H; Yu D
    BMC Plant Biol; 2018 Sep; 18(1):203. PubMed ID: 30236054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress.
    Veena ; Reddy VS; Sopory SK
    Plant J; 1999 Feb; 17(4):385-95. PubMed ID: 10205896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zn2+ dependent glyoxalase I plays the major role in methylglyoxal detoxification and salinity stress tolerance in plants.
    Batth R; Jain M; Kumar A; Nagar P; Kumari S; Mustafiz A
    PLoS One; 2020; 15(5):e0233493. PubMed ID: 32453778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.