These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 35569279)

  • 1. Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset.
    Wen X; Cui Z; Jian S
    Accid Anal Prev; 2022 Jul; 172():106689. PubMed ID: 35569279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of assignments of dedicated automated vehicle lanes and inter-vehicle distances of automated vehicle platoons on car-following performance of nearby manual vehicle drivers.
    Chen F; Lu G; Tan H; Liu M; Wan H
    Accid Anal Prev; 2022 Nov; 177():106826. PubMed ID: 36081223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of automated vehicles in mixed traffic: Evaluating changes in performance of following human-driven vehicles.
    Mahdinia I; Mohammadnazar A; Arvin R; Khattak AJ
    Accid Anal Prev; 2021 Mar; 152():106006. PubMed ID: 33556655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driver-Automated Vehicle Interaction in Mixed Traffic: Types of Interaction and Drivers' Driving Styles.
    Ma Z; Zhang Y
    Hum Factors; 2024 Feb; 66(2):544-561. PubMed ID: 35469464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety performance evaluation of freeway merging areas under autonomous vehicles environment using a co-simulation platform.
    Chen P; Ni H; Wang L; Yu G; Sun J
    Accid Anal Prev; 2024 May; 199():107530. PubMed ID: 38437756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-like car-following model for autonomous vehicles considering the cut-in behavior of other vehicles in mixed traffic.
    Fu R; Li Z; Sun Q; Wang C
    Accid Anal Prev; 2019 Nov; 132():105260. PubMed ID: 31442924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fostering Drivers' Trust in Automated Driving Styles: The Role of Driver Perception of Automated Driving Maneuvers.
    Ma Z; Zhang Y
    Hum Factors; 2024 Jul; 66(7):1961-1976. PubMed ID: 37490722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety-oriented automated vehicle longitudinal control considering both stability and damping behavior.
    Dai Y; Wang C; Xie Y
    Accid Anal Prev; 2024 Apr; 198():107486. PubMed ID: 38310835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drivers trust, acceptance, and takeover behaviors in fully automated vehicles: Effects of automated driving styles and driver's driving styles.
    Ma Z; Zhang Y
    Accid Anal Prev; 2021 Sep; 159():106238. PubMed ID: 34182321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How would autonomous vehicles behave in real-world crash scenarios?
    Zhou R; Zhang G; Huang H; Wei Z; Zhou H; Jin J; Chang F; Chen J
    Accid Anal Prev; 2024 Jul; 202():107572. PubMed ID: 38657314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal traffic conflict analysis of autonomous and traditional vehicle platoons in field tests via surrogate safety measures.
    Das T; Shoaib Samandar M; Rouphail N
    Accid Anal Prev; 2022 Nov; 177():106822. PubMed ID: 36103759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greater prosociality toward other human drivers than autonomous vehicles: Human drivers' discriminatory behavior in mixed traffic.
    Sun H; Ge Y; Qu W
    Accid Anal Prev; 2024 Aug; 203():107623. PubMed ID: 38735195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pedestrians' road-crossing behavior towards eHMI-equipped autonomous vehicles driving in segregated and mixed traffic conditions.
    Song Y; Jiang Q; Chen W; Zhuang X; Ma G
    Accid Anal Prev; 2023 Aug; 188():107115. PubMed ID: 37209555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of car driver responses to avoid car-to-cyclist perpendicular collisions based on drive recorder data and driving simulator experiments.
    Zhao Y; Miyahara T; Mizuno K; Ito D; Han Y
    Accid Anal Prev; 2021 Feb; 150():105862. PubMed ID: 33276185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the Impacts of Autonomous Vehicles on Road Congestion Using Microsimulation.
    Malibari A; Higatani A; Saleh W
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancing investigation of automated vehicle crashes using text analytics of crash narratives and Bayesian analysis.
    Lee S; Arvin R; Khattak AJ
    Accid Anal Prev; 2023 Mar; 181():106932. PubMed ID: 36580765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of freeway-based test scenarios for applying new car assessment program to automated vehicles.
    Ko W; Park S; Park S; Jeong H; Yun I
    PLoS One; 2022; 17(7):e0271532. PubMed ID: 35862304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operational design domain of automated vehicles at freeway entrance terminals.
    Ye X; Wang X
    Accid Anal Prev; 2022 Sep; 174():106776. PubMed ID: 35870304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What can we learn from autonomous vehicle collision data on crash severity? A cost-sensitive CART approach.
    Zhu S; Meng Q
    Accid Anal Prev; 2022 Sep; 174():106769. PubMed ID: 35858521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.