These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35569715)
1. Dark-fermentative hydrogen production from synthetic lignocellulose hydrolysate by a mixed bacterial culture: The relationship between hydraulic retention time and pH conditions. Zagrodnik R; Duber A; Seifert K Bioresour Technol; 2022 Aug; 358():127309. PubMed ID: 35569715 [TBL] [Abstract][Full Text] [Related]
2. High-rate biohydrogen production from xylose using a dynamic membrane bioreactor. Baik JH; Jung JH; Sim YB; Park JH; Kim SM; Yang J; Kim SH Bioresour Technol; 2022 Jan; 344(Pt A):126205. PubMed ID: 34715337 [TBL] [Abstract][Full Text] [Related]
3. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste. Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171 [TBL] [Abstract][Full Text] [Related]
4. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
5. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152 [TBL] [Abstract][Full Text] [Related]
6. Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture. Qiu C; Shi P; Xiao S; Sun L World J Microbiol Biotechnol; 2017 Jan; 33(1):7. PubMed ID: 27858340 [TBL] [Abstract][Full Text] [Related]
7. Continuous dark and photo biohydrogen production in a baffled bioreactor and electrons distribution analysis. Li Y; Zhang Z; Jiang D; Jing Y; Lu C; Zhang H; Zhang Q Bioresour Technol; 2021 Oct; 337():125440. PubMed ID: 34166932 [TBL] [Abstract][Full Text] [Related]
8. Unlocking the high-rate continuous performance of fermentative hydrogen bioproduction from fruit and vegetable residues by modulating hydraulic retention time. Martínez-Mendoza LJ; García-Depraect O; Muñoz R Bioresour Technol; 2023 Apr; 373():128716. PubMed ID: 36764366 [TBL] [Abstract][Full Text] [Related]
9. Mixed-culture H Anburajan P; Park JH; Sivagurunathan P; Pugazhendhi A; Kumar G; Choi CS; Kim SH J Biosci Bioeng; 2017 Sep; 124(3):339-345. PubMed ID: 28528789 [TBL] [Abstract][Full Text] [Related]
10. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Kongjan P; O-Thong S; Kotay M; Min B; Angelidaki I Biotechnol Bioeng; 2010 Apr; 105(5):899-908. PubMed ID: 19998285 [TBL] [Abstract][Full Text] [Related]
11. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate. Zhao L; Cao GL; Sheng T; Ren HY; Wang AJ; Zhang J; Zhong YJ; Ren NQ Bioresour Technol; 2017 Nov; 243():548-555. PubMed ID: 28697457 [TBL] [Abstract][Full Text] [Related]
12. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Kongjan P; Angelidaki I Bioresour Technol; 2010 Oct; 101(20):7789-96. PubMed ID: 20554199 [TBL] [Abstract][Full Text] [Related]
13. Improvement of biohydrogen production using a reduced pressure fermentation. Kisielewska M; Dębowski M; Zieliński M Bioprocess Biosyst Eng; 2015 Oct; 38(10):1925-33. PubMed ID: 26111633 [TBL] [Abstract][Full Text] [Related]
14. Biohydrogen production at pH below 3.0: Is it possible? Mota VT; Ferraz Júnior ADN; Trably E; Zaiat M Water Res; 2018 Jan; 128():350-361. PubMed ID: 29121503 [TBL] [Abstract][Full Text] [Related]
15. HRT dependent performance and bacterial community population of granular hydrogen-producing mixed cultures fed with galactose. Kumar G; Sivagurunathan P; Park JH; Park JH; Park HD; Yoon JJ; Kim SH Bioresour Technol; 2016 Apr; 206():188-194. PubMed ID: 26859326 [TBL] [Abstract][Full Text] [Related]
16. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Lo YC; Chen WM; Hung CH; Chen SD; Chang JS Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245 [TBL] [Abstract][Full Text] [Related]
17. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270 [TBL] [Abstract][Full Text] [Related]
18. Changes in performance and bacterial communities in a continuous biohydrogen-producing reactor subjected to substrate- and pH-induced perturbations. García-Depraect O; Diaz-Cruces VF; Rene ER; León-Becerril E Bioresour Technol; 2020 Jan; 295():122182. PubMed ID: 31623922 [TBL] [Abstract][Full Text] [Related]
19. pH and hydraulic retention time regulation for anaerobic fermentation: Focus on volatile fatty acids production/distribution, microbial community succession and interactive correlation. Lv N; Cai G; Pan X; Li Y; Wang R; Li J; Li C; Zhu G Bioresour Technol; 2022 Mar; 347():126310. PubMed ID: 34767905 [TBL] [Abstract][Full Text] [Related]
20. Delignification of disposable wooden chopsticks waste for fermentative hydrogen production by an enriched culture from a hot spring. Phummala K; Imai T; Reungsang A; Chairattanamanokorn P; Sekine M; Higuchi T; Yamamoto K; Kanno A J Environ Sci (China); 2014 Jun; 26(6):1361-8. PubMed ID: 25079849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]